The Hierarchy of Evidence

The Hierarchy of evidence is based on summaries from the National Health and Medical Research Council (2009), the Oxford Centre for Evidence-based Medicine Levels of Evidence (2011) and Melynyk and Fineout-Overholt (2011).

I	Evidence obtained from a systematic review of all relevant randomised control trials.
II	Evidence obtained from at least one well designed randomised control trial.
III	Evidence obtained from well-designed controlled trials without randomisation.
IV	Evidence obtained from well designed cohort studies, case control studies, interrupted time series with a control group, historically controlled studies, interrupted time series without a control group or with case-series
V	Evidence obtained from systematic reviews of descriptive and qualitative studies
VI	Evidence obtained from single descriptive and qualitative studies
VII	Expert opinion from clinicians, authorities and/or reports of expert committees or based on physiology

<table>
<thead>
<tr>
<th>Reference (include title, author, journal title, year of publication, volume and issue, pages)</th>
<th>Evidence level (I-VII)</th>
<th>Key findings, outcomes or recommendations</th>
</tr>
</thead>
</table>
| Australian Commission on Safety and Quality in Healthcare (2011). *National Safety and Quality Health Service Standards*. Sydney: ACSQHC. | VII | - Recommend 8 elements that are essential features of systems of care for recognising & responding to clinical deterioration
- Four elements relate to clinical processes: measurement & documentation of observations, escalation of care, rapid response systems and clinical communication |
- Heart Rate and Respiratory Rate percentiles established
- VICTOR charts: Purple zone either 1st or 99th percentile according to the upper or lower limit of parameter. Orange zone 5th & 95th percentiles. |
- VICTOR charts: High BP – (orange zone only) 99th centile +5mmHg |
- Critical monitor alarms were reduced 43% |
- SBP is significantly affected by height
- VICTOR charts: Low BP (Purple zone only) based on 5th percentile for Systolic BP and 50th height percentile |
- Significant improvement in documentation of vital signs, communication from nurses to doctors following clinical instability and time to medical review |
<table>
<thead>
<tr>
<th>Reference (include title, author, journal title, year of publication, volume and issue, pages)</th>
<th>Evidence level (I-VII)</th>
<th>Key findings, outcomes or recommendations</th>
</tr>
</thead>
</table>
- ViCTOR charts: High systolic BP limits (Orange zone) were based on the 99th percentile of height + 5mmHg for respective ages groups (equivalent to cut-off for stage 2 hypertension) |
| Royal College of Nursing (2007). Standards for assessing, measuring and monitoring vital signs in infants, children and young people. RCN: London . | VII | - Describes 5 standards and criteria to help guide local procedures in relation to vital sign monitoring which included:
- Education and training, teaching children, young people and parents and carers, assessing & measuring vital signs, medical devices & equipment, record keeping |
- Identifies indications for continuous cardio-respiratory monitoring and continuous pulse oximetry |
- Significant reductions in cardiac arrest and unexpected death for the subgroup of patients that had fulfilled the MET call criteria
- ViCTOR charts: Some Orange and Purple response criteria based on MET criteria (eg Staff or family member worried, SpO₂, Apnoea or cyanosis) |
| Townley, C., Theisen, E., Stanzel, B., Chang, C., Goddard, J. & Kinney, S. An investigation into the use of MET criteria in setting cardiac monitors and the effect on the rate of false alarms. Master of Nursing Science Presentation Day (27th May, 2011), The University of Melbourne. | VI | - Investigating the role of MET criteria for alarm setting in cardiac monitors and rate of false alarms in a paediatric cardiac ward at RCH (n=201 monitors hours observed)
- 2.83 alarms per monitor per observed hour and 82% of the alarms were false
- Significant reductions in false alarms for Heart Rate (p=0.01) and SpO₂ (p=0.004) for alarm settings that at MET criteria. |