<table>
<thead>
<tr>
<th>Reference (include title, author, journal title, year of publication, volume and issue, pages)</th>
<th>Evidence level (I-VII)</th>
<th>Key findings, outcomes or recommendations</th>
</tr>
</thead>
</table>
| Groves N & Tobin A. (2007). High flow nasal oxygen generates positive airway pressure in adult volunteers. *Australian Critical Care*. 20, 126—131 | VI | Suggests that HFNC therapy has been shown to have similar effect to nasal CPAP
A degree of CPAP is generated however flow is dependent on mouth being open or closed |
Appeared to reduce the need for intubation in infants (<24 months) with viral bronchiolitis |
Provides a well-tolerated and comfortable method of non-invasive ventilatory support |
| ten Brink F, Duke T, Evans J (2013). High Flow Nasal Prong oxygen therapy or nasopharyngeal continuous positive airway pressure for children with moderate-to-severe respiratory distress. *Pediatric Critical Care Medicine, 14*(7), p:326-331. | III | A study of children within RCH PICU. HFNP therapy is effective in managing moderate-to-severe respiratory distress in children <5 years old with varying diagnosis. In older children the therapy is promising but due to small sample size further research is required. |
| Inata Y & Takeuchi M (2017). Complex effects of high flow nasal cannula therapy on hemodynamics in the pediatric patient after cardiac surgery. *Journal of Intensive Care, 5*(30), p:2-3. | VI | Positive pressure provided by HFNP therapy helps decrease afterload in turn abating sympathetic nervous system activity. The positive pressure generated by HFNP can exert different effects on pulmonary vascular resistance, which can be particularly significant in the patient with single ventricle heart. |