The Hierarchy of Evidence

The Hierarchy of evidence is based on summaries from the National Health and Medical Research Council (2009), the Oxford Centre for Evidence-based Medicine Levels of Evidence (2011) and Melynyk and Fineout-Overholt (2011).

I Evidence obtained from a systematic review of all relevant randomised control trials.
II Evidence obtained from at least one well designed randomised control trial.
III Evidence obtained from well-designed controlled trials without randomisation.
IV Evidence obtained from well designed cohort studies, case control studies, interrupted time series with a control group, historically controlled studies, interrupted time series without a control group or with case-series
V Evidence obtained from systematic reviews of descriptive and qualitative studies
VI Evidence obtained from single descriptive and qualitative studies
VII Expert opinion from clinicians, authorities and/or reports of expert committees or based on physiology

<table>
<thead>
<tr>
<th>Reference (include title, author, journal title, year of publication, volume and issue, pages)</th>
<th>Evidence level (I-VII)</th>
<th>Key findings, outcomes or recommendations</th>
</tr>
</thead>
</table>
- Outlines procedure for insertion and management of nasopharyngeal tube (neonates)
- Includes suggested tube lengths in nasopharynx for neonates weighing greater than and less than 3.5kg |
- Outlines procedure for insertion and management of nasopharyngeal tube (neonates)
- Includes suggested tube lengths in nasopharynx for neonates weighing less than 2kg, and greater than 2kg
- Utilises total of 11 references |
- Concluded that work of breathing and ventilation with bubble CPAP and ventilator derived CPAP are similar when equivalent delivered prong pressures are assures.
- Concluded that there is improved oxygenation with bubble CPAP that requires further investigation |
<table>
<thead>
<tr>
<th>Reference</th>
<th>Evidence Level</th>
<th>Description</th>
</tr>
</thead>
</table>
- Short bi nasal prongs are more effective at preventing reintubation and are associated with lower oxygen requirements than single prongs after premature neonates are weaned from the ventilator
- Bi nasal prongs are better than single prongs nasal CPAP for premature neonates
- The most effective and least traumatic bi nasal prong device remains to be determined
- Outlines physiological effects of CPAP
- Discusses CPAP delivery interfaces |
- The ease at which prongs can be stabilized plays a role I success of CPAP therapy |
- Outlines procedure for insertion and management of nasopharyngeal tube (neonates)
- Includes suggested tube lengths in nasopharynx for neonates weighing less than 1.5kg, between 1.5kg and 2kg, and greater than 2kg
- Utilises total of 8 references |
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Score</th>
<th>Summary</th>
</tr>
</thead>
</table>
- Additional research is required to better define the utility and safety of humidified high flow nasal cannula compared to nasal CPAP. |
- Seven trials are included.
- Short bi nasal prong devices are more effective than single prong devices in reducing the rate of reintubation, lowering oxygen requirements and respiratory rate.
- Short bi nasal prongs are more effective than nasopharyngeal continuous positive airway pressure in the treatment of early respiratory distress syndrome.
- The most effective bi nasal prong device is not determined. |