A pointed question: is a child at risk following a community-acquired needlestick injury?

SCENARIO
You are asked to see a previously well 5-year-old boy who presented to the accident and emergency department. While playing in a public park he picked up a discarded 1 mL syringe with an attached 27-gauge needle and punctured the skin of his hand. His mother asks, “Will he catch AIDS? What should we do now?”

STRUCTURED CLINICAL QUESTION
In a child with a community-acquired needlestick injury (CA-NSI) (patient, intervention), what is the risk of blood-borne virus (BBV) transmission (outcome)?

Introduction
CA-NSI in children causes significant parental anxiety. The risk of HIV and hepatitis virus transmission following NSI in healthcare settings is well established. The risk of BBV transmission to a child from a CA-NSI is substantially less than from occupational exposure. Despite this, many clinical guidelines are based on occupational NSI.

SEARCH STRATEGY AND OUTCOME
Medline was searched using the Ovid interface (1946 to present/no limits set) using MeSH subject headings: (*needlestick injuries/ or *needles/ or *syringes/) and (*blood-borne pathogens/ or *hiv infections/ or *acquired immunodeficiency syndrome/ or *hiv seropositivity/) or (*hepatitis/ or *hepatitis, viral, human/ or *hepatitis b/ or *hepatitis c/) or (community mp. or *community-acquired infections/ or *environmental exposure/). No age limits were imposed for reported cases of BBV transmission from CA-NSI, on the basis that confirmed transmission at any age would support the theoretical possibility of transmission in children. Only papers addressing non-healthcare-related CA-NSI were included. Cross-sectional studies with no longitudinal follow-up and those reporting exclusively BBV transmission from injecting drug use were excluded. The search date was 11 May 2014.

The Medline search retrieved 1100 publications, of which 16 were relevant. Search of Embase via the Ovid interface (1974–present) using the same search strategy retrieved 918 publications and identified 1 additional relevant paper. The 17 relevant publications were hand-searched for further references and 4 further relevant publications were found. Search of the Cochrane Library database retrieved no relevant reviews. The final 21 included studies are summarised in tables 1 and 2. When the original publication provided insufficient information, authors were contacted for further details.

COMMENTARY
Of the 21 studies, there were 17 observational studies (table 1) and 4 reports describing a total of 5 cases (table 2). Repeated attempts to contact the authors of one observational study to clarify the findings were unsuccessful and that paper was excluded from further analysis.1 The remaining observational studies were heterogeneous in study design (nine retrospective,2–10 six prospective,11–16 one mixed17) and completeness of reported outcomes, including the age of cases. Some studies included CA-NSI alongside other exposures, and where possible, the other exposures were excluded from our review. Some did not distinguish between exposures in reporting results (none of these studies documented a BBV transmission). For most studies, there was a high rate of loss to follow-up. Serological results for hepatitis B (HBV), hepatitis C virus (HCV) and HIV were inconsistently reported and available for all three in only a few studies.

Between 1987 and 2011, 1565 cases of CA-NSI were reported in the 16 observational studies. HIV postexposure prophylaxis (PEP) was recommended in 198 cases. Where reported, adherence to prescribed HIV PEP was generally poor. Of the 1565 cases, 1 unvaccinated adult caring for a relative with chronic HBV infection, in a country with a relatively high HBV infection rate and without routine HBV vaccination, developed evidence of HBV infection in the 8 weeks after sustaining a NSI while disposing of an intravenous needle and after declining postexposure HBV immunoglobulin and vaccination. There were no other cases of HBV seroconversion (serology reported for 604 patients), HCV seroconversion (423 patients) or HIV seroconversion (995 patients). There were no cases of virus transmission in children or adolescents.

Five cases of BBV transmission attributed to CA-NSI were reported in the four case reports, including two cases of HBV18 19 and three of HCV20 21. In each case, the possibility of viral transmission by an alternative route could not be ruled out. There were no reports of HIV transmission. Only one of the five cases was a child and occurred following a CA-NSI from a needle discarded by a neighbour with known HBV and HIV infection. The child’s immunisation status was not reported, and he was not given post-exposure HBV immunoglobulin or vaccination. The remaining four cases occurred in adults, two of whom were in high-risk occupations. For the single adult case of HBV infection, immunisation status was not reported and he did not receive appropriate postexposure HBV immunoglobulin or vaccination. Each of the five patients developed hepatitis. In the three adults with HCV transmission, HCV antibody was detected from 3 months post NSI. One adult with HBV cleared the virus, and one adult with HCV had successful interferon-based treatment. The 4-year-old boy had unsuccessful treatment and developed chronic hepatitis.

Occupational studies provide estimates of the risk associated with NSI. Meta-analyses report mean risk rates of 0.23% for HIV,22 0.75% for HCV23 and 23–37% (HBeAg-negative source) or 37–62% (HBeAg-positive source) for HBV.24 However, for HBV, vaccination or adequate PEP (vaccine±immunoglobulin) confers near-total protection. Risk for BBV transmission in the healthcare setting is highest with deep injection of a large inoculum (large volume, high viral load) as is more likely to occur in association with a large-gauge hollow-bore needle.25 26 Extrapolated to the community setting, deep injury with a large-gauge hollow-bore needle, visibly stained or filled with blood, sustained minutes following use (such as might occur in a household with a known infected drug user or in a deliberate assault), would be expected to carry a similar risk. However, most episodes of CA-NSI in children, such as in our scenario, are not associated with these risk factors. While study findings of viral persistence give cause for concern, the same studies indicate that under usual conditions of needle use in the community (small-gauge, low void-volume syringes) and subsequent environmental exposure (time, heat, drying, humidity, chemicals), infectivity is markedly and rapidly reduced.27–35 43–44 This risk analysis assumes the source needle user is infected, whereas BBV rates among people who inject drugs actually vary markedly worldwide and are lower in developed countries with universal HBV vaccination and needle exchange.16–18 Very low risk of infection...
Table 1 Observational studies of blood-borne virus (BBV) transmission following community-acquired needlestick injury (CA-NSI)

<table>
<thead>
<tr>
<th>Citation</th>
<th>Study group</th>
<th>Study type (level of evidence)</th>
<th>Outcomes—planned BBV serology (timing post CA-NSI)</th>
<th>Key results</th>
<th>BBV seroconversions</th>
<th>No prescribed ART</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butashvili et al</td>
<td>Georgia, age range: 2–63 years, 25/46 <18 years (n=46)</td>
<td>Retrospective cohort (level 3)</td>
<td>HBV, HCV, HIV (0, 6 months)</td>
<td>46/46 (100%)</td>
<td>1 HBV</td>
<td>0</td>
<td>See text for discussion of single case of HBV seroconversion.</td>
</tr>
<tr>
<td>Celenza et al</td>
<td>Australia, age range 19–62 years, median 31 years (n=39)</td>
<td>Retrospective cohort (level 3)</td>
<td>HBV, HCV, HIV (0, 3, 6 months)</td>
<td>2/39 (5%)</td>
<td>None</td>
<td>6</td>
<td>Of 31 HBV non-immune patients, only 4 received recommended PEP. Of 6 patients prescribed ART, 2 did not have baseline HIV serology checked.</td>
</tr>
<tr>
<td>Papenburg et al</td>
<td>Canada, age range: 1–17.7 years, median 7.3 years (n=274)</td>
<td>Mixed retrospective and prospective cohort (level 3)</td>
<td>HBV, HCV, HIV (0, 6 months)</td>
<td>189/274 (69%)</td>
<td>None</td>
<td>82 (84% adherence)</td>
<td>Of 230 patients not known to be HBV immune, 189 (82.2%) received immunoglobulin, 213 (92.6%) received vaccine.</td>
</tr>
<tr>
<td>Szenborn et al</td>
<td>Poland, age range 2–19 years, mean 9.5 years (n=51)</td>
<td>Retrospective cohort (level 3)</td>
<td>HBV, HCV, HIV (0, 1, 6 months)</td>
<td>51/51 (100%)</td>
<td>None</td>
<td>31 (94% adherence)</td>
<td></td>
</tr>
<tr>
<td>Thomas et al</td>
<td>UK, age range 5–10 years (n=20)</td>
<td>Prospective cohort (level 3)</td>
<td>HBV, HCV, HIV (0, 3 months)</td>
<td>20/20 (100%)</td>
<td>None</td>
<td>19 (50% adherence)</td>
<td></td>
</tr>
<tr>
<td>de Waal et al</td>
<td>South Africa, age range 3–14 years, median 9.6 years (n=54)</td>
<td>Prospective cohort (level 3)</td>
<td>HBV, HCV, HIV (0, 3, 6 months)</td>
<td>44/54 (81%)</td>
<td>None</td>
<td>44 (52% adherence)</td>
<td></td>
</tr>
<tr>
<td>Makwana et al</td>
<td>UK, age range 1.7–16.5 years, median 8.4 years (n=33)</td>
<td>Prospective cohort (level 3)</td>
<td>HBV, HCV, HIV (0, 3, 6 months)</td>
<td>25/53 (47%)</td>
<td>None</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>O’Leary et al</td>
<td>Australia, age range 2–79 years, median 26 years, 25/120 <16 years (range 2–15 years, median 6 years) (n= 66, 120 with non-CA-NSI cases)</td>
<td>Prospective cohort (level 3)</td>
<td>HBV, HCV, HIV (0, 6 months)</td>
<td>10/120 (8%)</td>
<td>None</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Russell et al</td>
<td>Australia, age range 1.8–14.3 years, median 6.9 years (n=50)</td>
<td>Prospective cohort (level 3)</td>
<td>HBV, HCV, HIV (0, 1, 6 months)</td>
<td>36/50 (72%)</td>
<td>None</td>
<td>0</td>
<td>First HBV vaccination provided in 41/42 non-immune cases. Completion of three-dose course in 22/42.</td>
</tr>
<tr>
<td>Babi et al</td>
<td>USA, age range 2–3 years (n=4)</td>
<td>Retrospective cohort (level 3)</td>
<td>HBV, HCV, HIV (0, 1, 3, 6, 12 months)</td>
<td>3/4 patients (75%)</td>
<td>None</td>
<td>4 (25% adherence)</td>
<td>Reviewed HIV PEP use in 10 children and adolescents, after a variety of exposures.</td>
</tr>
<tr>
<td>Slinger et al</td>
<td>Canada, age range 0.8–16.9 years, median 6.6 years (n=116)</td>
<td>Retrospective cohort (level 3)</td>
<td>HBV, HCV, HIV (timing not reported)</td>
<td>49/116 (42%)</td>
<td>None</td>
<td>0</td>
<td>Only 1.7% previously HBV immunised, 78% received HBV immunoglobulin and 76% received vaccine (73% both).</td>
</tr>
<tr>
<td>Nourse et al</td>
<td>Ireland, age range 2–14 years, median 7.4 years (n=50, 52 with non-CA-NSI cases)</td>
<td>Retrospective cohort (level 3)</td>
<td>HBV, HCV, HIV (0, 6 months)</td>
<td>10/50 (20%)</td>
<td>None</td>
<td>1 (non-CA-NSI patient)</td>
<td>One high-risk CA-NSI from needle used by HCV-infected brother. 48 received first-dose HBV vaccine. 29 also had HBV immunoglobulin.</td>
</tr>
<tr>
<td>Aragon Peña et al</td>
<td>Spain, age range 1–15 years, median 5.8 years (n=249)</td>
<td>Prospective cohort (level 3)</td>
<td>HBV, HIV (0, 6, 12 months)</td>
<td>180/249 (73%)</td>
<td>None</td>
<td>0</td>
<td>189 (75.9%) received HBV immunoglobulin, 144 (71.8%) completed HBV vaccination course.</td>
</tr>
<tr>
<td>Wyatt et al</td>
<td>UK, mean age 6 years (n=67)</td>
<td>Retrospective cohort (level 3)</td>
<td>HBV, HIV (timing not reported)</td>
<td>3/67 (4%)</td>
<td>None</td>
<td>0</td>
<td>No HBV PEP for 11. Immunoglobulin and vaccine as per local recommendations for 49/67 (72%).</td>
</tr>
<tr>
<td>Montella et al</td>
<td>Italy, age range 2–72 years, median 26 years, 50/408 <12 years (n=408)</td>
<td>Prospective cohort (level 3)</td>
<td>HBV, HIV (0, 6, 12, 18, 24 months)</td>
<td>408/408 (100%)</td>
<td>None</td>
<td>0</td>
<td>Cites local HIV prevalence in injecting drug users of >50%.</td>
</tr>
<tr>
<td>Walsh et al</td>
<td>UK, ‘children’ (n=18)</td>
<td>Retrospective cohort, case report (level 3/4)</td>
<td>HBV, HIV (timing not reported)</td>
<td>3/18 (17%)</td>
<td>None</td>
<td>0</td>
<td>Reports CA-NSI in 3 children at a dump, and reviews 15 subsequent patients. Proposes testing syringes, if available.</td>
</tr>
</tbody>
</table>

HBV, hepatitis B virus; HCV, hepatitis C virus; PEP, postexposure prophylaxis.
combined with the relative infrequency of CA-NSI in children means observational studies may never yield sufficiently confidence-inspiring CIs.

Overall, data from our systematic review, the healthcare setting and experimental findings suggest the risk of BBV transmission from a CA-NSI in a child immunised against HBV or given adequate HBV PEP is so low as to possibly be negligible.

Clinical bottom line

► We did not find any reports of blood-borne virus (BBV) transmission to a child from an incidental community-acquired needlestick injury (CA-NSI).

► CA-NSI in children is distinct from NSI in healthcare settings and is associated with much lower risk of BBV transmission.

► In a susceptible child, the highest risk for transmission is for hepatitis B virus (HBV). This risk is virtually eliminated by postexposure prophylaxis (vaccine±HBV immunoglobulin).

REFERENCES

Table 2. Case reports of blood-borne virus (BBV) transmission following community-acquired needlestick injury (CA-NSI).

<table>
<thead>
<tr>
<th>Year</th>
<th>Country</th>
<th>Virus</th>
<th>Age (years)</th>
<th>NSI circumstances</th>
<th>Management</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2011</td>
<td>Australia</td>
<td>HBV</td>
<td>26 M</td>
<td>Cleaner, previous injecting drug use, negative serology previously. History of likely HBV vaccination. NSI to hand with 1 mL syringe with no visible blood</td>
<td>Negative baseline serology. Safe-sex counselling. HBV vaccine advised but administration delayed until day 46 post NSI</td>
<td>HBsAg and HBeAg detected at day 63, followed by acute hepatitis. Later clearance of HBsAg and HBeAg with development of anti-HBs and anti-HBe. HIV and HCV antibodies not detected</td>
</tr>
<tr>
<td>2 1997</td>
<td>Spain</td>
<td>HBV</td>
<td>4 M</td>
<td>Acute hepatitis B following NSI from needle discarded by neighbour known to have HBV and HIV. Immunisation history unstated. Parents HBV and HCV negative</td>
<td>No medical attention at time of injury. No immunoprophylaxis</td>
<td>Chronic carrier of HBsAg. Unsuccessful interferon treatment. HIV-1 antibody not detected</td>
</tr>
<tr>
<td>3 2005</td>
<td>Australia</td>
<td>HCV</td>
<td>‘Young man’</td>
<td>Caravan park worker. NSI with 1 mL tuberculin needle and syringe while emptying rubbish bins, emptied daily. Unvaccinated for HBV</td>
<td>HBV immunoglobulin and vaccination. Negative baseline serology</td>
<td>HCV antibody positive on day 93 post NSI. Developed hepatitis</td>
</tr>
<tr>
<td>4 2007</td>
<td>Australia</td>
<td>HCV</td>
<td>64 F</td>
<td>NSI to foot with 27-G needle and syringe while walking through city park with high local prevalence of injecting drug use</td>
<td>No medical attention at time of injury. No immunoprophylaxis</td>
<td>HCV antibodies detected at 3 months post NSI. Chronic viral hepatitis. HBV and HIV negative</td>
</tr>
<tr>
<td>5 2007</td>
<td>Spain</td>
<td>HCV</td>
<td>64 F</td>
<td>NSI in a cemetery while cleaning mausoleum</td>
<td>Baseline serology negative. HBV vaccination. HIV PEP at the patient’s insistence.</td>
<td>HBV antibodies and acute hepatitis from 3 months post NSI. Successful interferon treatment. HBV and HIV negative</td>
</tr>
</tbody>
</table>

HBV, hepatitis B virus; **HCV**, hepatitis C virus; **PEP**, postexposure prophylaxis.

Kubitschke A, Bader C, Tillmann HL, et al. [Injuries from needles contaminated with hepatitis C virus: how high is the risk of seroconversion for medical personnel really?]. Der Internist 2007;48:1165–72.

A pointed question: is a child at risk following a community-acquired needlestick injury?

Joshua Osowicki and Nigel Curtis

Arch Dis Child published online August 27, 2014
doi: 10.1136/archdischild-2014-306929

Updated information and services can be found at:
http://adc.bmj.com/content/early/2014/08/27/archdischild-2014-306929.full.html

These include:

References
This article cites 38 articles, 12 of which can be accessed free at:
http://adc.bmj.com/content/early/2014/08/27/archdischild-2014-306929.full.html#ref-list-1

Published online August 27, 2014 in advance of the print journal.

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Advance online articles have been peer reviewed, accepted for publication, edited and typeset, but have not yet appeared in the paper journal. Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication.

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
Articles on similar topics can be found in the following collections

ADC Archimedes (195 articles)
HIV/AIDS (116 articles)
Immunology (including allergy) (1393 articles)
Sexual health (277 articles)
Guidelines (74 articles)
Injury (269 articles)
Trauma (269 articles)
Child health (2519 articles)
Hepatitis and other GI infections (50 articles)
Liver disease (116 articles)
Environmental issues (26 articles)
Epidemiologic studies (1167 articles)
Health education (389 articles)
Health promotion (432 articles)

Advance online articles have been peer reviewed, accepted for publication, edited and typeset, but have not yet appeared in the paper journal. Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication.

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/