Paediatric Haemopoietic Progenitor/Stem Cell Transplantation

Karin Tiedemann 2010
Definitions

- **Autologous HPC Transplant**
 - HPC harvested from patient; cryopreserved, reinfused after high dose chemo/irradiation

- **Syngeneic HPC Transplant**
 - donor genotypically identical to patient (identical twin)

- **Allogeneic HPC Transplant**
 - donor not genetically identical to patient
 - matched sibling/family mismatch/unrelated donor
Transplant activity worldwide
1980-2009

[Graph showing the increase in transplant activity worldwide from 1980 to 2009, with two lines representing autologous and allogeneic transplants.]
Allogeneic Haemopoietic Stem Cell Transplantation

- Replacement of recipient haemopoietic progenitor cells (HPC) by donor HPC
- Unique organ transplant
 - Donor tissue is regenerative
 - Both recipient and donor cells may be immune-competent
 - Recipient lymphocytes mediate graft rejection
 - Donor lymphocytes mediate graft-versus-host disease (GVHD) and graft vs leukaemia effect
Haemopoietic Progenitor Cell Sources

- BM
- PB (Mobilised with G-CSF+/- chemo)
- Cord Blood

All may be either

- Autologous
- Allogeneic
 - Related
 - Unrelated
HPC Procurement

- BM Harvest
 - GA
 - Multiple BM aspirates from iliac spines/crests

- PBSC
 - G-CSF Mobilisation
 - Bone pain
 - Splenomegaly
 - Higher yield of CD34+ cells, multiple returns possible in Auto setting
 - Insertion of large gauge cannulae (high flow rates)
 - peripheral in adults
 - CVC, GA in paeds
Leukapheresis
HPC Procurement

- **Cord Blood**
 - N vaginal delivery/ Caesarian section
 - Cord clamped
 - Cord cleansed
 - Umbilical vein cannulated
 - Gravity flow into blood collection bag/CPD
 - Transport to processing laboratory
 - Quality control
 - TNC, TLC, CD34+ cells, virology
 - Tissue Typing
 - Volume/red cell reduction
 - Addition of cryoprotectant – DMSO
 - Rate controlled freeze to -196°C
 - Storage in N₂ vapour phase
 - Registry Listing
Donor – Recipient Matching

- HLA (Human Leukocyte Antigen) System
 - Controlled by genes located on short arm Ch 6
 - HLA loci are part of the genetic region known as the Major Histocompatibility Complex (MHC)
 - MHC molecules control immune response – recognition of self and non self
 - Genes code for **antigens** expressed on cell surfaces (Serology)
 - Each gene is highly polymorphic (**allelic differences**) DNA sequencing
 - Ethnic differences in antigen and allele frequencies ie B 44:04
 - Each parent contributes a haplotype of 3 **Class I** (A, B, C) antigens and 3 **Class II** (DR, DQ, DP) antigens
 - Close matching between recipient and HPC donor is important for transplant outcome
 - Permissive mismatching when CB is donor source

6/01/2011
Donor – Recipient Matching

- HLA system
 - Each individual will have 2 antigens/alleles at each locus (A, B, C, DR, DQ, DP).

Maternal Haplotype:
- A1
- C3
- B4401
- DR4
- DQ3
- DP1

Paternal Haplotype:
- A2
- C8
- B4403
- DR3
- DQ7
- DP2
Donor Selection - HLA Inheritance

Maternal Haplotypes

AB
AC
AD

Paternal Haplotypes

CD
BC
BD

Children
Donor Identification

- Matched Sib (1:4 chance of match) **Best donor!**
- MM related donor - extended family search
 - Search side of family with unusual haplotype/unique antigen
 - Check for consanguinity and sibs partnering sibs
- Unrelated donor
 - Volunteer BM donor Registries - BMDWW
 - Greater 14×10^6 BM/PBSC donors listed
 - Cord Blood Banks
 - Approx 435,000 CB units banked
HLA-A, -B & -DR Serologically Matched Pairs
number of allele mismatches HLA-A, -B, -C & -DR

0 mismatched loci (n = 791)
1 mismatched locus (n = 394)
2 mismatched loci (n = 172)
3+ mismatched loci (n = 65)

P-value < 0.0001
Allo BM vs PBSC

- PBSC lead to more rapid engraftment
 - N > 0.5x10^9/L 2-3 days earlier
 - Platelet independence (>20x10^9/L) D15 vs D20
- Incidence of AGVHD higher for PBSC
- Incidence of CGVHD higher for PBSC
- Increased GVL effect for PBSC (May be useful in advanced leukaemia)
- Concern re use G-CSF in healthy donors / Children- ? Risk of induction leukaemia
CB vs UDBM

- Readily available source of HPC, otherwise discarded
- No donor procedure
- Better ethnic mix of HLA types

- More rapidly available (stored in liquid/vapour N_2)
 - Important in rapidly progressive diseases – Relapsed ALL

- Immunologic immaturity
 - Crossing of HLA barriers, > chance of finding donor
 - Less GvHD (Advantage in non malignant disease)

- No decrease in GvL effect
Cord blood - Disadvantages

- Fixed volume
 - Limited no. of progenitor cells
 - ? Adequacy of cell dose for larger patients

- Delayed engraftment

- Delayed Immune reconstitution

- Infection (viral reactivation in recipient)

- Potential genetic disease transmission
Changing donor source

<table>
<thead>
<tr>
<th></th>
<th>'85-89</th>
<th>'90-94</th>
<th>'95-00</th>
<th>'01-04</th>
<th>'05-09</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSib</td>
<td>21</td>
<td>38</td>
<td>38</td>
<td>34</td>
<td>32</td>
</tr>
<tr>
<td>BM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SibCB</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>MMR</td>
<td>5</td>
<td>12</td>
<td>16</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>UDBM</td>
<td>0</td>
<td>1</td>
<td>35</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>UDCB</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>27</td>
<td>49</td>
</tr>
</tbody>
</table>
Conditions treatable with HSCT
Conditions Treatable by HPC Transplant - Non Malignant

- Immune Deficiencies
- Bone Marrow Failure Syndromes
 - Single lineage
 - Pure rbc aplasia, CAMT, Kostman Syndrome
 - Trilineage (SAA, FA)
- Genetic defects of Hb production
 - Thalassaemias
 - Haemoglobinopathies
 - Congenital Dyserythropoietic Anaemias
- Inherited Metabolic Disorders
Immune Deficiency Disorders

- SCID/CID (T and B cell deficiencies)
- Non SCID PID
 - Wiscott Aldrich Syndrome
 - Di George Syndrome
 - Ataxia Telangiectasia
- Disorders of immune dysregulation
 - Familial HLH
 - XLP
- Defects of phagocyte number/function
 - Chronic Granulomatous Disease
 - Severe Congenital NPA
 - LAD-1
‘Other’ Genetic Disorders affecting haemopoietic lineages

- Abnormal Cellular Production/ Function
 - Red Cells
 - β thalassaemia major,
 - α thalassaemia (1-4 gene deletion/ mutation)
 - Sickle cell disease
 - Congenital dyserythropoietic anaemia
 - Osteoclasts (monocyte derived)
 - Malignant Osteopetrosis
Genetic Disorders

- Inherited Metabolic Disorders (Enzyme deficiencies)
 - Mucopolysaccharidoses
 - Hurlers Syndrome (MPS I)
 - Marateaux Lamy Syndrome (MPS VI)
 - Leukodystrophies
 - Cerebral X-linked Adrenoleukodystrophy
 - Metachromatic leukodystrophy - ‘Juvenile onset’
 - Globoid cell dystrophy
Malignant Conditions Treatable by HSC Transplant

- ALL/NHL
 - VHR, CR1
 - CR2
- AML/MDS
 - MDS, untreated
 - HR, CR1
 - CR2
- Ph+ CML
- JMML
Transplant Indications RCH

Time period

1985-2009

<table>
<thead>
<tr>
<th>Condition</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL/NHL</td>
<td>152</td>
</tr>
<tr>
<td>AML/MDS</td>
<td>82</td>
</tr>
<tr>
<td>CML</td>
<td>10</td>
</tr>
<tr>
<td>JMML</td>
<td>12</td>
</tr>
<tr>
<td>SAA/FA</td>
<td>29/8</td>
</tr>
<tr>
<td>SCID</td>
<td>27</td>
</tr>
<tr>
<td>Non SCID ID</td>
<td>21</td>
</tr>
<tr>
<td>Other</td>
<td>31</td>
</tr>
</tbody>
</table>

Malignancy

69%
Recipient Evaluation

- Issues
 - Expected disease consequences
 - Quality of standard medical care available
 - Burden of medical care
 - Quality of life
 - Chemosensitivity of Malignant disease
 - Type of donor available

- Risk Assessment
 - Disease vs potential TRM
Recipient selection

- Disease status should allow ‘reasonable’ chance of successful outcome from HPCT
 - Acute leukaemia/lymphoma – in remission/responsive
 - Organ function normal/ minimally abnormal
 - Respiratory
 - Cardiac
 - Renal
 - Neurological
 - Infection Controlled
 - Bacterial
 - Fungal
 - Mycobacteria
 - Viral
Pre Transplant Conditioning

Aims

- Disease eradication
 - Malignancy
- Immunosuppression/ Engraftment
 - Malignancy
 - Non Malignant disorders
- Conditioning Regimens
 - Nil (SCID)
 - Myeloablative
 - **Chemotherapy** +/- TBI +/- ATG
 - Non myeloablative, Immunosuppressive, reduced Intensity
 - **Fludarabine, ATG + Cy / Melphalan / Bu/ Low dose TBI**
The Transplant

- HSC infusion (IV via CVC)
 - Cryopreserved (CB)
 - Thaw +/- Wash
 - Fresh Product (BM/PBSC)
 - +/- Manipulation
 - Volume reduction
 - Red cell depletion (Major ABO MM)
 - plasma depletion (Minor ABO MM)
 - CD34+ selection (T/B cell depletion)
 - T cell depletion
The Transplant Course

Transfusion Support
- WCC
- Antibiotics
- VOD

Platelets
- AGVHD

BM infusion
- Chemo

Days post transplant:
- 7
- 14
- 21
- 28
- 35

GVHD Prophylaxis
Post Transplant Care

- Acute chemo-radiation toxicity
 - Marrow Aplasia (18-28D)
 - Mucositis
 - Oral, oesophageal, lower GI
 - Diarrhoea
 - Skin toxicity
 - TBI, Etoposide, Thiotepa

- Supportive Care
 - Blood products (Think of both recipient and donor ABO, Rh groups)
 - May be Major/Minor ABO MM
 - Antibiotics, antifungals
 - Nutritional support

- Engraftment
 - Neutrophils > 0.5x10^9/l
 - Platelets >20x10^9/l sustained >7D post platelet transfusion
Hepatic Veno-occlusive Disease

- ‘Sinusoidal Obstruction Syndrome’
- Onset usually < 21 Days post BMT
- Diagnostic Criteria (Baltimore/Modified Seattle)
 - Obstructive Jaundice,
 - Wt gain (2-5%),
 - Tender hepatomegaly
 - Ascites,
- Risk factors
 - Allogeneic BMT > autologous
 - Prior liver disease
 - Prior Myelotarg
 - Chemotherapy (Cy, Bu, Melphalan)
 - TBI
Pathology of VOD

- Injury to endothelial cells of sinusoids
- Extravasation of rbc into subendothelial space
- Oedema and thickening of wall of central venules
- Narrowing of venular lumen
- Increased resistance to blood flow from portal system to hepatic vein
- Hepatic congestion
- Hepatocyte injury and death
- Thrombus rarely observed in venules or sinusoids.
Histopathology of VOD
Disease Severity

- Mild
 - No therapy required, recovery
 - D 100 mortality 9%

- Moderate
 - Therapy required, recovery
 - D 100 mortality 23%

- Severe
 - Persistent VOD at D100, death from VOD
 - Mortality 98%

- Predictors of severity
 - Maximum Bilirubin < 155mmol/l 5% mort, >255mmol/l, mort 81%
 - Encephalopathy -100% mortality
 - Haemodialysis -14% survival
Prophylaxis against VOD

- Ursodeoxycholic Acid
 - possible benefit on overall hepatic toxicity

- PGE1
 - vasodilator, cytoprotective effect on endothelium – toxic, no benefit

- ATIII
 - no reduction in incidence of VOD

- Low dose continuous infusion Heparin
 - Benefit not proven but single R study showed benefit. Low incidence toxicity

- Defibrotide (Novel polydeoxribonucleotide -, no intrinsic anticoagulant activity)
 - Marked reduction in incidence/severity of VOD in small, non randomised studies.
 - R study now confirmed risk reduction by 40% when used prophylactically
Treatment of VOD

- Supportive care
 - Fluid restriction, diuretics, platelets
 - Correction of coagulopathy

- Specific therapy
 - Defibrotide – 42% survival in severe VOD
 - Recombinant tPA – ‘unacceptable’ incidence of bleeding problems but up to 45% response in severe VOD
 - Liver transplant
GVHD

- **Target Organs**
 - Skin
 - GIT
 - Liver

- **Onset**
 - AGVHD D12-D100
 - CGVHD >D100
GVHD – Risk Factors

- **HLA mismatching**
 - Greater the degree of HLA MM the higher the risk of acute and chronic GVHD

- **Gender of donor**
 - Female donor, male recipient
 - Female (previous preg) to female recipient

- **Age**
 - Younger patients, lower incidence and severity of both acute and chronic GVHD

- **Stem cell product**
 - CB < BM < PBSC
 - T cell dose
AGVHD - Mechanism

- **Host tissue damage** (Drugs, XRT, Viruses)
 - Antigen exposure
 - Cytokine production
 - TNFα, IL-1
- **Donor Lymphocyte stimulation**
 - Host Ag’s
 - Cytokine stimulation
- **Cytokine storm**
 - IFN gamma, IL-2
AGVHD - Onset D12-100

- Skin
 - Rash - patchy and limited, to generalised erythroderma with bullae formation, desquamation

- GIT
 - Diarrhoea, electrolyte and fluid disturbance
 - Vomiting, ileus
 - Abdominal pain
 - Bleeding

- Liver
 - Jaundice, enzyme disturbance
AGVHD Overall Grade

<table>
<thead>
<tr>
<th>Grade</th>
<th>Skin</th>
<th>GIT</th>
<th>Liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>M-P rash involving up to 50% body</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>>25% MP rash (+++) generalised erythroderma (+++)</td>
<td>10-15ml/kg/d Persist. nausea</td>
<td>Bi 34 -53umol/l</td>
</tr>
<tr>
<td>3</td>
<td>++ - ++++ (bullous formation)</td>
<td>>16ml/kg/d Abdo pain/ileus</td>
<td>>53umol/l</td>
</tr>
<tr>
<td>4</td>
<td>As for 3, with</td>
<td>decreased</td>
<td>performance</td>
</tr>
</tbody>
</table>
Acute Graft versus Host Disease

- **Prophylaxis**
 - CSA/MTX
 - T-Cell Depletion
 - CD34 Selection
 - In vitro T depletion - Anti CD3 Ab
 - In vivo T depletion - Campath

- **Treatment**
 - Steroids, Cyclosporin, Tacrolimus, MMF
 - ATG
 - Monoclonal Ab’s
 - Extra corporeal photopheresis
Acute GVHD
100-day mortality after HLA-identical sibling transplantation 2007-2008

- Early Disease: 60%
- Intermediate Disease: 20%
- Advanced Disease: 20%
- Chronic Phase: 0%
- Accelerated Phase: 40%
- Blast Phase: 20%
- Other: 20%
100-day mortality after unrelated donor transplantation 2007-2008

- Early Disease: 60%
- Intermediate Disease: 40%
- Advance Disease: 20%
- Chronic Phase: 20%
- Accelerated Phase: 0%
- Blast Phase: 0%
- Other: 0%

Diseases:
- AML
- CML
- MDS/MPS
- ALL
- Aplastic Anemia
- Immune Deficiency
Causes of death after transplantations done in 2003-2008

HLA-identical sibling

- Primary Disease (43%)
- GVHD (10%)
- Infection (14%)
- Other (22%)
- Organ Failure (8%)

Unrelated donor

- Primary Disease (35%)
- GVHD (12%)
- Infection (17%)
- Other Cause (19%)
- Other (22%)
- Organ Failure (12%)

Autologous

- Primary Disease (73%)
- IPn* (1%)
- Infection (5%)
- Organ Failure (4%)
- Other Cause (17%)

*IPn = Idiopathic pneumonia syndrome
Chronic GVHD

- Risk Factors
 - HLA MM
 - Pre-existing AGVHD
 - HSV, VZV infection
 - Age of donor: Adult > Child
 - Donor Source: PBSC>BMD>CDB
CGVHD – Clinical Manifestations

‘Autoimmune’ like disorder

- Limited CGVHD
 - Skin or liver involvement only, or both
- Extensive CGVHD
 - Other organ involvement
Chronic GVHD

- Onset > Day 100
- Target Organs
 - Skin (pigment, moisture, elasticity,)
 - Joints (effusion, stiffness, contracture)
 - GIT (malabsorption, stricture)
 - Liver (chronic change to cirrhosis)
 - Conjunctivae (dry, sicca syndrome)
 - Mucosal surfaces (dry, ulcers, lichen planus)
 - Bronchial tree (bronchiolitis obliterans)
Chronic GVHD
Chronic GVHD
Chronic CGVHD

- Treatment
 - CSA, Tacrolimus, Prednisolone, ATG, Azathiaprine
 - Thalidomide
 - PUVA
 - ECP
Immune reconstitution

- Donor type
 - Msib PBSC/ BM > MUD> UDCB
- Graft Manipulation
 - T cell replete > T cell depleted
- CGVHD
 - Immunosuppressive therapy
Important milestones

- Cessation of GVHD prophylaxis
 - Decreased immunosuppression
 - Decreased risk of relapse
 - Increased risk of CGVHD

- Early as Possible for Malignant Disease (1-6 months post Tx)
 - M sib donor, earlier than matched UD, earlier than MMUD
 - Young children earlier than older patients (increased risk CGVHD)
 - Delay if severe AGVHD

- Later for patients with non malignant disease
 - no benefit from CGVHD
 - no GVL effect
 - risk of graft rejection

- Return to school (4-12M post Tx)
Post Tx Re-immunisation

- Full re-immunisation required
- Inactivated vaccines 6-12M post transplant, timing dependent on B cell recovery
 - Prevenar, Fluvax from 6 months
 - DPT, inactivated polio, Haemophilus influenzae, HBvax, meningococcal vaccine from 12months
- Annual Influenza vaccine
- Live vaccines
 - Off all immunosuppression
 - Recovering cellular immunity
 - Generally not before 2 yrs post Tx
Relapse Risk post BMT

- Diagnosis
- Stage of disease at time of transplant
 - CR1, CR2, MRD, Relapse
- Graft source
- T cell depletion
- Type/duration of post graft immunosuppression
Survival

- Disease
 - Malignant
 - Non Malignant
- Donor source
- Age
- Stage of disease at time of transplant
Probability of survival after allogeneic transplant for severe aplastic anemia, by donor type and age, 1998-2008
One-year survival after myeloablative conditioning for acute leukemias in any remission phase, CML or MDS, age <50 years, by year of transplant and graft source, 1988-2008
Probability of survival after HLA-matched sibling donor transplant for ALL, age <20 years, by disease status, 1998-2008

Early (N=915)
Intermediate (N=1,313)
Advanced (N=243)

P < 0.0001

Years
Probability of Survival, %
Probability of survival after unrelated donor transplant for ALL, age <20 years, by disease status, 1998-2008

P < 0.0001

CIBMTR
Probability of survival after HLA-matched sibling donor transplant for AML, age <20 years, by disease status, 1998-2008
Inherited Immune Syndromes
Survival of Pediatric (Age < 18 Years) Marrow Recipients with All Preparative Regimens, by Disease 1998–2006

- WAS (n = 48)
- SCID (n = 35)

Years After Transplant
Survival
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0 1 2 3 4 5

NATIONAL MARROW DONOR PROGRAM®
Inherited Metabolic Disorders
Survival of Pediatric (Age < 18 Years) Marrow Recipients with Myeloablative Preparative Regimens, by Disease 1998–2006

NATIONAL MARROW DONOR PROGRAM®
Late Effects of BMT

<table>
<thead>
<tr>
<th></th>
<th>Chemotherapy</th>
<th>TBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth</td>
<td>+/-</td>
<td>+</td>
</tr>
<tr>
<td>Cataracts</td>
<td>+/-</td>
<td>+</td>
</tr>
<tr>
<td>Infertility</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>↓ Sex hormone secretion</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>↓ Thyroid hormone</td>
<td>-</td>
<td>+/-</td>
</tr>
<tr>
<td>↓ Cognitive Function</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>(Age / Underlying Disease Dependent)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>↑ Risk of malignancy</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Summary

- HSCT offers a chance of cure to many
- Risks versus benefits must be weighed
- Long term surveillance for late effects of therapy
- Quality of life may be compromised post Tx
 - GVHD, BO
- Survival & QOL may increase markedly
 - ie ALL, Hurlers Syndrome, SAA