Nutritional deficiencies and Haemolytic Anaemias

FRACP Lectures 2010

Iron Deficiency

- Iron absorption
 - Heme iron
 - Non-heme iron
 - Enhanced by gastric acid, ascorbate (vit C), breast milk
 - Decreased by bovine milk proteins, egg white, phytates, bran, calcium, zinc, lead

Iron Deficiency

- Stages in development of iron deficiency
 - Iron depletion: low ferritin, normal Hb and indices (MCV)
 - Iron deficiency: low ferritin and indices; Hb normal
 - Iron deficiency anaemia

Prevalence of iron deficiency in Australian children

<table>
<thead>
<tr>
<th>Age (months)</th>
<th>n</th>
<th>Iron depletion%</th>
<th>Iron deficiency%</th>
<th>Anaemia%</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-23</td>
<td>182</td>
<td>18.7</td>
<td>5.4</td>
<td>1.4</td>
</tr>
<tr>
<td>24-35</td>
<td>176</td>
<td>14.2</td>
<td>3.7</td>
<td>3.0</td>
</tr>
<tr>
<td>36-47</td>
<td>148</td>
<td>6.6</td>
<td>1.7</td>
<td>0.0</td>
</tr>
<tr>
<td>48-62</td>
<td>172</td>
<td>1.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9-62</td>
<td>678</td>
<td>10.5</td>
<td>2.8</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Risk factors:

- GIT disease
 - Coeliac disease
 - IBD
 - Cow’s milk enteropathy
 - Worm infestation
- Blood loss
 - Menstrual
 - Hereditary haemorrhagic telangiectasia
 - Urinary
 - Pulmonary
Iron Deficiency

Clinical consequences of iron deficiency
- Anaemia
- Poor growth
- Exercise intolerance
- Epithelial changes
- Immunity
- Pica

Iron Deficiency

Neurological dysfunction
- Lower scores on Bayley Scale of infant development
- Changes reversible at Hb <100 g/L even with therapy
- Impaired short term memory and reduced attention span in older children

Iron Deficiency

Laboratory evaluation of iron deficiency
- FBE:
 - Hb
 - MCV and MCH
 - RCC
 - RDW
 - Platelets
- Film:
 - Elongated cells++
 - Target cells+

Iron Deficiency

Iron studies:
- Serum iron unreliable
- Diurnal variation
- Falls in acute illness
- Transferrin
- Ferritin
 - Acute phase reactant
- Soluble transferrin receptors (a erythroid activity/inverse to iron availability): sTfR/log ferritin?
 - More useful <1 ACR >2 IDA or combined
- Bone marrow iron
- RBC Zinc protoporphyrin (elevated in both IDA/ACD)

Iron Deficiency

Therapy
- Underlying factors
- Iron supplements
 - Oral iron: 4-6 mg/kg in 2-3 divided doses per day
 - Adolescents 100-300 mg/day
 - Ascorbic acid
 - Parenteral iron
- Iron-fortified cereals/formulae after 6/12
- Irons supps for exclusively breast fed infants after 6/12
Iron Deficiency

- Causes of poor response to oral iron
 - non-compliance
 - ongoing losses
 - insufficient duration of treatment
 - high gastric pH
 - inhibitors of iron absorption
 - tannins, calcium
 - lead, aluminium
 - incorrect diagnosis
 - thalassaemia
 - anaemia of chronic disease
 - sideroblastic anaemia

Vitamin B12 Deficiency

- Cobalamin essential coenzyme for
 - synthesis of methionine from homocysteine
 - Methylcobalamin
 - requires 5-methyl-THF
 - S-adenosyl methionine is the principle methyl donor in numerous biological reactions
 - conversion of methylmalonyl CoA to succinyl CoA
 - Adenosylcobalamin
 - transported in plasma bound to transcobalamin II
 - contained only in animal products

Vitamin B12 Deficiency - Risk factors for vitamin B12 deficiency

- Maternal B12 deficiency
- pernicious anaemia
- vegetarian diet
- terminal ileal disease/gastric bypass/gastritis
- NEC
- Crohn’s disease
- Small bowel resection
- Blind loops/intestinal infections
- Pancreatic insufficiency

Vitamin B12 Deficiency - Inborn errors of vitamin B12 transport and metabolism

- Transport
 - Transcobalamin I and II deficiency- AR
 - Intrinsic factor deficiency-Juvenile PA
 - Immerslund Grasbeck syndrome – abnormality in cubulin gene results in failure of absorption of B12 in terminal ileum +/- proteinuria

- Utilisation
 - Methylmalonic aciduria
 - Methylcobalamin deficiency- distinct phenotype and biochemical abnormalities
 - Other- drugs NO (-methionine synthetase), PPI, metformin

Vitamin B12 Deficiency - Clinical manifestations:

- Megaloblastic anaemia
- macrocytic anaemia +/- leucopenia/thrombocytopenia
- Neurological
 - posterior columns
 - pyramidal tracts
 - peripheral neuropathy
 - depression
 - dementia
Vitamin B12 Deficiency

- Vitamin B12 deficiency in infancy:
 - period of normal development followed by developmental delay or regression
 - macrocytosis, anaemia and marrow changes may be mild or absent
 - +/- seizures
 - may be irreversible

Laboratory evaluation:
- FBE and film
 - oval macrocytes
 - anaemia +/- other cytopenias
 - hypersegmented neutrophils
 - +/- teardrop cells
- Bone marrow
 - hypercellular; left shift
 - megaloblastic; nuclear:cytoplasmic dysynchrony
 - giant metamyelocytes
- Raised LDH, homocysteine and methylmalonic acid
- Low serum B12 (except TCII deficiency)
- Holotranscobalamin level (measures B12/TCII)

Holotranscobalamin = "active B12"
- Has replaced serum B12 as investigation of choice at RCH
- Earliest marker of B12 deficiency
- More sensitive and specific than serum B12
- More sensitive than Hcy or MMA

Therapy:
- Cyanocobalamin 1000 μg IM daily for 1 week
 weekly for 3 weeks
 3 monthly for maintenance
- Pernicious anaemia: oral B12 1000 μg/d
- Infants of B12 deficient mothers: maintenance not required once stores replete - monitor to exclude inborn error of metabolism

Folate Deficiency

- Folates widely distributed in foods
 - Adult diet
 - 1/3 from meats and fish
 - 1/3 from cereals and bread
 - 1/3 from fruit and vegetables
 - Adequate quantities in breast milk but may be inadequate in cow’s milk
 - No folate in goat’s milk

- Folates act in numerous single carbon reactions
 - Synthesis of methionine from homocysteine
 - Purine and pyrimidine metabolism
- Circulates in plasma as 5-methyl THF
- Body folate stores limited to several weeks
- Acute folate deficiency may develop in hospitalised patients
Folate Deficiency

- Risk factors for folate deficiency
 - Poor absorption
 - Coeliac disease; Crohn’s
 - Parasitic infestations
 - Inadequate stores
 - Maternal deficiency
 - Prematurity
 - Increased demand
 - Pregnancy
 - Haemolysis (thalassaemia; sickle cell disease, congenital haemolytic anaemia)

- Drugs/toxins
 - Alcohol
 - Anticonvulsants
 - Oral contraceptives
 - Methotrexate
 - Bactrim

Folate Deficiency

- Clinical associations:
 - Megaloblastic anaemia
 - Anaemic crisis in chronic haemolysis
 - Neurological
 - Depression
 - Dementia
 - Psychosis
 - Cardiovascular disease
 - Malignancy
 - GIT, cervical

- Laboratory evaluation:
 - FBE, film and BM as for B12 deficiency
 - NB acute folate deficiency not macrocytic
 - Raised LDH, homocysteine but not methylmalonic acid
 - Folate assay
 - Serum folate
 - RCF

Folate Deficiency

- Therapy
 - Exclude vitamin B12 deficiency
 - Increase dietary folate
 - Folate 100 μg/kg/day
 - Preconception folate supplements for prevention NTD
 - Fefol/FGF inadequate in pregnant women with increased folate requirements

- Inborn errors of folate metabolism and transport
 - MTHFR deficiency
 - No megaloblastic anaemia
 - Neurological abnormalities and developmental delay
 - Homocysteinaemia and hypomethioninaemia
 - Rx with folate, MTHF, B12, pyridoxine, carnitine and betain
 - Hereditary folate malabsorption- AR
 - Megaloblastic anaemia, FTT and CNS abnormalities
 - May require parenteral folate
Folate Deficiency
- Inborn errors of folate metabolism and transport
- Thermolabile variant of MTHF reductase
- 10% population homozygous deficiency
- Mild homocysteinaemia
- Increased arterial thrombosis
- Venous thrombosis
- No clinical expression in childhood

Classification of Haemolysis
- Pathologic
 - Intrinsic
 - Abnormal haemoglobin
 - Red cell enzyme deficiencies
 - Red cell membrane disorders
 - Extrinsic
 - DIC
 - Drug-induced
 - Mechanical
 - Immune-mediated

Classification of Haemolysis
- Morphologic
 - Spherocytic-spherocytes, acanthocytes
 - Oxidative-bite and blister cells
 - Microangiopathic-fragments
 - Other-spurr cells, bizarre pyknocytes

Classification of Haemolysis
- Clinical
 - Sick versus well child
 - Congenital versus acquired
 - Associated with other abnormalities
 - Coagulopathy
 - Thrombocytopenia
 - Neurological abnormalities

Laboratory evaluation of Haemolysis
- Screening
 - FBE and film
 - Reticulocyte count
 - Blood group and Ab screen
 - Coomb's test
 - Biochemistry
 - Bilirubin
 - LDH
 - Haptoglobin

Laboratory evaluation of Haemolysis
- Further investigations
 - Flow cytometry for eosin-5 maleimide staining
 - Hb instability
 - Hb electrophoresis
 - RBC enzyme assays
 - G-6-PD
 - Pyruvate kinase
 - Others
Immune-mediated Haemolysis

- Primary AIHA
 - Warm - IgG
 - Cold - IgM

- Secondary AIHA
 - Systemic autoimmune disease eg SLE
 - Immune deficiency
 - Infections
 - Drugs
 - Malignancy esp lymphoma

- Secondary AIHA
 - Systemic autoimmune disease eg SLE
 - Immune deficiency
 - Infections
 - Drugs
 - Malignancy esp lymphoma

- Drug-associated AIHA
 - penicillins
 - cephalosporins
 - alpha methyldopa
 - quinidine/quinine
 - isoniazid
 - rifampicin

- Drug-associated AIHA
 - penicillins
 - cephalosporins
 - alpha methyldopa
 - quinidine/quinine
 - isoniazid
 - rifampicin

- Investigations
 - DCT
 - Warm - IgG and complement
 - Cold – complement only
 - Blood film
 - polychromasia
 - spherocytosis (warm Ab)
 - agglutination (cold Ab)
 - Haemophagocytosis (PCH)
 - Donath-Landsteiner Ab for PCH
 - Serology

- Investigations
 - DCT
 - Warm - IgG and complement
 - Cold – complement only
 - Blood film
 - polychromasia
 - spherocytosis (warm Ab)
 - agglutination (cold Ab)
 - Haemophagocytosis (PCH)
 - Donath-Landsteiner Ab for PCH
 - Serology

- Therapy:
 - Underlying disease
 - Infection-associated haemolysis usually self-limiting
 - Minimise transfusions
 - Immunosuppression
 - More effective for IgG vs IgM
 - steroids; second line agents
 - IVIG
 - Splenectomy - curative in 60-80%
 - Monoclonal anti-CD20 antibody

- Therapy:
 - IgM mediated cold haemolysis
 - warm extremities
 - plasma exchange
 - monoclonal Ab to CD20

- Therapy:
 - IgM mediated cold haemolysis
 - warm extremities
 - plasma exchange
 - monoclonal Ab to CD20
Red Cell Fragmentation Syndromes

- Endothelial Damage
 - Haemolytic-uraemic syndrome/TTP
 - Haemangioma (Kasabach-Merritt syndrome)
 - Autoimmune disorders eg. SLE
- Trauma
 - Extracorporeal circulation- ECMO
 - Cardiac malformations/prostheses- VAD

- Disseminated intravascular coagulation
 - Sepsis
 - Deficiency of natural anticoagulants (Purpura fulminans)
 - Malignancy
 - T-activation
 - Necrotising enterocolitis
 - Drugs eg. Cyclosporin, chemotherapy

Haemolytic-uraemic Syndrome

- Age 6 months-5 years in 90%
- Preceding diarrhoeal illness
 - E coli 0157:H7
 - Shigella
 - Salmonella
- Familial/relapsing forms
 - Anaemia, thrombocytopenia and renal impairment +/- fever and CNS disturbance

Haemolytic Uraemic syndrome

- Investigations
 - Microangiopathic haemolytic anaemia
 - Thrombocytopenia
 - Leucocytosis
 - Coags normal or only mildly abnormal
 - D-Dimers normal or only mildly increased
- Treatment
 - supportive
 - Plasma infusion or exchange for atypical HUS and TTP
 - Avoid platelet transfusions

TTP (Thrombotic Thrombocytopenic Purpura)

- Red cell fragmentation/haemolysis, low plt, renal dysfunction, neurological dysfunction, fever
- Deficiencies of Metalloprotease (ADAMTS 13) - enzyme responsible for breakdown of ULVWM, excess multimers cause intravascular fibrin linkage, fibrin strands mechanical red cell destruction with thrombosis
- Acquired causes: infection (HIV/pneumo), drugs (quinine, chemotherapy, cyclosporin, ticlopidine/clopidogrel), post BMT, pregnancy
- Inherited deficiency of ADAMTS 13, AR, Rx prophylactic FFP
- Acute Rx: plasma exchange- cryodeplete FFP (removed ULVWM)
- Significant mortality and morbidity: 50% fatality
- Congenital Form- Upshaw Schulman syndrome

Hereditary Spherocytosis

- Mechanism
 - deficiency of spectrin, ankyrin, band 3 or protein 4.2
 - Affects vertical stability of red cell membrane
 - membrane blebs 2nd to poor membrane attachment
 - spherocytes formed in spleen
- Increased Na+ flux across membrane
- Activation of K+-Cl- cotransporter
- Neonatal jaundice or anaemia
- Haemolysis, splenomegaly and anaemia
- 75% AD, 25% AR/spontaneous mutations
Red Cell Membrane Abnormalities

- Hereditary Spherocytosis
 - Variable numbers of spherocytes
 - Acanthocytes
 - Pincer cells
 - Raised MCHC

- Hereditary Elliptocytosis
 - Autosomal dominant
 - Mutation of α or β spectrin or protein 4.1
 - No spectrin tetramers formed
 - Membrane instability and fragmentation
 - Linkage to Rh and Duffy phenotype
 - Variable phenotype
 - Silent
 - Mild haemolysis
 - Severe haemolysis

Red Cell Enzyme Deficiencies

- G-6-PD deficiency
 - X-linked
 - hemizygous male
 - heterozygous female
 - homozygous female
 - Multiple mutations
 - Africa, Mediterranean, Middle East, SE Asia
 - Reduced production of NADPH and ability to reduce oxidant compounds

- G-6-PD deficiency
 - Osmotic fragility and autohaemolysis normal
 - Screening tests
 - Decolourisation assays
 - May miss heterozygotes
 - G-6-PD assay
 - False negatives with brisk haemolysis
Red Cell Enzyme Deficiencies

- **G-6-PD deficiency**
 - Neonatal jaundice
 - Usually male
 - Onset G2-3
 - Variable severity
 - Morphology usually non-specific
 - Jaundice > anaemia
 - ?Role of neonatal liver function and exogenous oxidant agents

Red Cell Enzyme Deficiencies

- **G-6-PD deficiency: Acute Haemolysis**
 - Exposure to exogenous oxidant or infection
 - Fever, abdo pain, pallor, dark urine and jaundice
 - Precipitous fall in Hb
 - Self-limiting

Red Cell Enzyme Deficiencies

- **G-6-PD deficiency: Chronic non-spherocytic haemolytic anaemia**
 - Chronic anaemia
 - Reticulocytosis
 - +/- Macrocytosis
 - Extravascular haemolysis
 - Acute exacerbations with oxidant stress

Red Cell Enzyme Deficiencies

- **Pyruvate Kinase deficiency**
 - Haemolysis due to abnormalities of enzymes of glycolytic pathway rare; 90% of cases due to PK deficiency
 - Impaired formation of ATP
 - Autosomal recessive or compound heterozygosity
 - Worldwide distribution esp. Northern Europe

Red Cell Enzyme Deficiencies

- **Pyruvate Kinase deficiency**
 - Clinical
 - Neonatal jaundice
 - Chronic haemolytic anaemia + splenomegaly
 - Diagnosis
 - Osmotic fragility normal or decreased
 - Autohaemolysis normal or increased with added glucose
 - Increased red cell 2,3 DPG
 - PK assay: false normal with reticulocytosis, leucocyte contamination or variant mutations
Red Cell Enzyme Abnormalities

- Pyruvate Kinase deficiency
 - Morphology: often non-specific
 - Anisopoikilocytosis
 - Polychromasia
 - Whiskered spherocytes

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>% Normal & Hb Enzyme Abn.</th>
<th>Inheritance</th>
<th>Clinical Features</th>
<th>Morphology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyruvate Kinase</td>
<td>2-3 AR</td>
<td>AR</td>
<td>Moderate CNSHA</td>
<td>Prominent stippling</td>
</tr>
<tr>
<td>Glucose phosphate isomerase</td>
<td>3-5 AR</td>
<td>AR</td>
<td>Moderate CNSHA</td>
<td>Neuromuscular dysfunction in some cases</td>
</tr>
<tr>
<td>Phosphofructokinase</td>
<td><1 AR</td>
<td>AR</td>
<td>Mild CNSHA + myopathy +/− myoglobinuria</td>
<td>Dense spiculated cells in some cases</td>
</tr>
<tr>
<td>Aldolase</td>
<td><1 AR</td>
<td>AR</td>
<td>Mild CNSHA +/− neurological deficits</td>
<td>Dense spiculated cells in small numbers</td>
</tr>
<tr>
<td>Hexokinase</td>
<td><1 AR/Frame AD</td>
<td>AR</td>
<td>Mild CNSHA</td>
<td>Dense spiculated cells in some cases</td>
</tr>
<tr>
<td>Threonine phosphate deaminase</td>
<td><1 AR</td>
<td>AR</td>
<td>Mild CNSHA + myoglobinuria +/− myoglobinuria</td>
<td>Dense spiculated cells in some cases</td>
</tr>
<tr>
<td>Phosphoglycerate kinase</td>
<td><1 X-linked</td>
<td>X-linked</td>
<td>Mild CNSHA, neurological and cardiac abnormalities</td>
<td>Dense spiculated cells in some cases</td>
</tr>
<tr>
<td>Adenosine deaminase excess</td>
<td><1 AD</td>
<td>AD</td>
<td>Mild CNSHA</td>
<td>Dense spiculated cells in some cases</td>
</tr>
</tbody>
</table>

Non-G-6-PD related Oxidative Haemolysis

- Neonatal Oxidative Haemolysis ("Neonatal Pyknocytosis")
 - Multifactorial: impaired response to oxidant injury
 - Altered hexose monophosphate shunt
 - Decreased glutathione peroxidase
 - Decreased superoxide dismutase
 - Increased in premature neonates
 - Consider maternal drug exposure e.g. lignocaine, antibiotics
 - External factors: napthalene, circumcision

Non-G-6-PD related Oxidative Haemolysis

- Neonatal Oxidative Haemolysis
 - Bite cells
 - Blister cells
 - Spherocytes
 - Fragmentation
 - Osmotic fragility variable
 - G-6-PD normal or increased

Non-G-6-PD related Oxidative Haemolysis

- Drug-induced Oxidative Haemolysis
 - Dapsone
 - Sulphas
 - Nitrofurantoin
 - Nitrofurathione
 - Methylene blue
 - Unstable haemoglobins

Approach to the Well Neonate with Persistent Haemolysis

- FBE and film
- Blood group/DAT
- G-6-PD assay
- Observe

G-6-PD deficiency
- Neonatal oxidative haemolysis
- Hereditary Spherocytosis
- Observes

Non-G-6-PD related Oxidative Haemolysis

Drug-induced Oxidative Haemolysis

- Dapsone
- Sulphas
- Nitrofurantoin
- Nitrofurathione
- Methylene blue
- Unstable haemoglobins