Insect Sting Allergy

Dean Tey
Paediatric Allergist & Immunologist
Monday 17 June 2010
Insect Sting Allergy

1. Epidemiology
2. Aetiology (meet the insects)
3. Clinical presentation
4. Risk of future systemic reactions
5. Investigations
6. Management
 a) Prevention
 b) Local reactions
 c) Systemic reactions
 d) Venom immunotherapy
Insect Sting Allergy

1. Epidemiology
2. Aetiology (meet the insects)
3. Clinical presentation
4. Risk of future systemic reactions
5. Investigations
6. Management
 a) Prevention
 b) Local reactions
 c) Systemic reactions
 d) Venom immunotherapy
Epidemiology

• Large localised reaction
 – Frequency estimated to be 10% in adults\(^1\)

• Systemic allergic reactions
 – Reported by up to 3% of adults\(^2\)
 – Severe sting reactions in up to 1% of children\(^3\)

Epidemiology

• Admissions
 – In Australia, approximately 1200 admissions per year attributed towards hornet, wasp or bee stings (2002-2005)

• Fatalities
 – In Australia, approximately 2 cases per year (20 cases between 1997-2005).
 – In USA, >50 cases per year.

FIG 1. Causes of anaphylaxis deaths. There were 112 deaths between 1997 and 2005 in Australia. Causes are shown.

FIG 2. Anaphylaxis fatalities. A, Absolute number of anaphylaxis deaths by cause and age group. B, Anaphylaxis death rates by cause and age group. All but 1 food-induced anaphylaxis death occurred in the 10- to 35-year age groups (1 death at 8 years), most insect sting–induced anaphylaxis deaths occurred between
Insect Sting Allergy

1. Epidemiology
2. Aetiology (meet the insects)
3. Clinical presentation
4. Risk of future systemic reactions
5. Investigations
6. Management
 a) Prevention
 b) Local reactions
 c) Systemic reactions
 d) Venom immunotherapy
Aetiology (the insects)

<table>
<thead>
<tr>
<th>ORDER: HYMENOPTERA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family</td>
</tr>
</tbody>
</table>
| Apidae (Bees) | • Apis (Honeybee)
| | • Apis mellifera (European honeybee)
| | • Bombus (Bumblebee) |
| Vespidiae (Wasps) | • Vespula and Dolichovespula (Yellow jackets or ‘wasps’)
| | • Vespula germanica (European/German Wasp)
| | • Vespula vulgaris (Common wasp)
| | • Vespa (Hornets)
| | • Polistes (Paper wasps) |
| Formicidiae (Ants) | • Myrmecia (Bull ants)
| | • Myrmecia pilosula (Jack jumper ant) |

Courtesy Peter Halasz.
Honeybees
- Major allergen *Api m 1* (phospholipase A2)
- Tan and black
- Hairy thorax and smooth abdomen
- Most mild-mannered of Hymenoptera
- Usually will not sting unless stepped or sat upon
- Presence of sting usually identifies honeybee (differential are the yellow jacket species)

Bumblebees
- Black and yellow
- Both thorax and abdomen are hairy
- Rarely cause sting reactions (slow and noisy thus easy to avoid)
- Not found in mainland Australia but common in Tasmania
Yellow jackets

- Major allergen *Ves v 5* (antigen 5)
- Yellow and black in colour
- Smooth thorax and abdomen
- Ill tempered
- Nests concealed in the ground or behind siding or retaining walls
- Scavenge for rotting fruit (found near garbage cans, dumpsters and orchards)
- Most common cause of insect sting reactions because they are disturbed when gardening and lawn mowing

Jack Jumper Ants

- Colour is black, or red-and-black
- Yellow/orange legs, antennae and mandibles
- Most common in Tasmania. In Victoria, they are found in rural areas
- Have a characteristic jumping motion when agitated
- Highly territorial and may fight with ants from the same/other colonies.

Photograph courtesy Alex Wild.
http://www.myrmecos.net/ants/MyrmeciaPilo1.html
Cross-reactivity

Honeybees have limited cross-reactivity to bumblebee and the vespid venoms

<table>
<thead>
<tr>
<th>ORDER: HYMENOPTERA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family</td>
</tr>
</tbody>
</table>
| **(Bees)** | • Apis (Honeybee)
 • *Apis mellifera* (European honeybee)
 • Bombus (Bumblebee) |
| **Vespidae** (Wasps) | • Vespula and *Dolichovespula* (Yellow jackets or ‘wasps’)
 • *Vespula germanica* (European/German Wasp)
 • *Vespula vulgaris* (Common wasp)
 • Vespa (Hornets)
 • Polistes (Paper wasps) |
| **Formicidae** (Ants) | • *Myrmecia* (Bull ants)
 • *Myrmecia pilosula* (Jack jumper ant) |

Cross-reactivity

<table>
<thead>
<tr>
<th>ORDER: HYMENOPTERA</th>
<th>Family</th>
<th>Genus/Species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apidae (Bees)</td>
<td>• Apis (Honeybee)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Apis mellifera (European honeybee)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bombus (Bumblebee)</td>
</tr>
<tr>
<td></td>
<td>Vespidiae (Wasps)</td>
<td>• Vespula and Dolichovespula (Yellow jackets or ‘wasps’)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vespula germanica (European/German Wasp)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vespula vulgaris (Common wasp)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vespa (Hornets)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Polistes (Paper wasps)</td>
</tr>
<tr>
<td></td>
<td>Formicidiae (Ants)</td>
<td>• Myrmecia (Bull ants)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Myrmecia pilosula (Jack jumper ant)</td>
</tr>
</tbody>
</table>

Cross-reactivity

<table>
<thead>
<tr>
<th>FAMILY</th>
<th>GENUS/SPECIES</th>
</tr>
</thead>
</table>
| Apidae (Bees) | • Apis (Honeybee)
| | • Apis mellifera (European honeybee)
| | • Bombus (Bumblebee) |
| Vespidae (Wasps) | • Vespula and Dolichovespula (Yellow jackets or ‘wasps’)
| | • Vespula germanica (European/German Wasp)
| | • Vespula vulgaris (Common wasp) |
| Formicidae (Ants) | • Myrmecia (Bull ants)
| | • Myrmecia pilosula (Jack jumper ant) |

In paper wasp allergy, less than half are completely cross-reactive with yellow jacket and honey bee venom.

Insect Sting Allergy

1. Epidemiology
2. Aetiology (meet the insects)
3. Clinical presentation
4. Risk of future systemic reactions
5. Investigations
6. Management
 a) Prevention
 b) Local reactions
 c) Systemic reactions
 d) Venom immunotherapy
Clinical presentation of sting reactions

• Non-allergic: Pain, itching and swelling

• Allergic reactions
 – Large localised swellings
 • Late-phase IgE-dependent reaction, develops after 12-48 hours, resolves over 5-10 days
 • Often > 15 cm
 – Systemic reactions
 • Cutaneous: generalised urticaria, angioedema, flushing, pruritus (only symptom in 68% of children vs 12% of adults)
 • Gastrointestinal: abdominal pain, vomiting
 • Respiratory: laryngeal oedema, wheeze, stridor, hoarse voice, coughing
 • CVS (less common): bradycardia, tachyarrhythmias, coronary vasospasm, hypotension

History – important aspects

• Current sting
 – Identify the particular insect involved
 • Single (bee) versus multiple stings (wasp)
 • Presence of sting (honeybee or Yellow jacket)
 – Time of onset of reaction
 – Signs of anaphylaxis (note: hoarse voice, coughing)

• Previous stings
 – Severity of previous reactions
 – Number of stings

• Other allergies: especially asthma

• Social history
 – Risk of future sting? E.g. beekeepers
 – Time to nearest hospital?

Insect Sting Allergy

1. Epidemiology
2. Aetiology (meet the insects)
3. Clinical presentation
4. Risk of future systemic reactions
5. Investigations
6. Management
 a) Prevention
 b) Local reactions
 c) Systemic reactions
 d) Venom immunotherapy
Risk of systemic reaction

- Asymptomatic patients with a positive diagnostic venom test (skin test or sIgE)
 - 15-25% of adults have a positive venom test\(^1\)
 - This is commonly transient, with 12% of subjects becoming negative every year\(^2\)
 - The risk of systemic reaction to a subsequent sting was 17% (11/65 subjects), compared to 0% in patients with a negative skin test (0/160)\(^2\)
 - An explanation may be that a variable proportion of these IgE antibodies are directed against the CHO determinants that cross-react with foods and inhalants.

1. Golden et al. JAMA 1989;262:240-244

TABLE I. Risk of systemic reaction in untreated patients with a history of sting anaphylaxis and positive venom skin test responses

<table>
<thead>
<tr>
<th>Original sting reaction</th>
<th>Risk of systemic reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-9 y</td>
</tr>
<tr>
<td>Sensitised and never stung</td>
<td>17%</td>
</tr>
<tr>
<td>No reaction</td>
<td>10%</td>
</tr>
<tr>
<td>Large local</td>
<td>10%</td>
</tr>
<tr>
<td>Cutaneous</td>
<td>20%</td>
</tr>
<tr>
<td>Systemic</td>
<td>40%</td>
</tr>
<tr>
<td>Anaphylaxis</td>
<td>60%</td>
</tr>
</tbody>
</table>

Investigations

• Who to investigate?
 – Diagnostic tests are indicated when the risk of anaphylaxis is judged to be high (i.e. >10%)
 – These are subjects where immunotherapy is being considered

TABLE I. Risk of systemic reaction in untreated patients with a history of sting anaphylaxis and positive venom skin test responses

<table>
<thead>
<tr>
<th>Original sting reaction</th>
<th>Risk of systemic reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-9 y</td>
</tr>
<tr>
<td>No reaction</td>
<td></td>
</tr>
<tr>
<td>Large local</td>
<td></td>
</tr>
<tr>
<td>Cutaneous</td>
<td></td>
</tr>
<tr>
<td>Systemic</td>
<td></td>
</tr>
<tr>
<td>Anaphylaxis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Severity</th>
<th>Age</th>
<th>17%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No reaction</td>
<td>Adult</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>Large local</td>
<td>All</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Cutaneous</td>
<td>Child</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>Systemic</td>
<td>Adult</td>
<td>20%</td>
<td>10%</td>
</tr>
<tr>
<td>Anaphylaxis</td>
<td>Child</td>
<td>40%</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>Adult</td>
<td>60%</td>
<td>40%</td>
</tr>
</tbody>
</table>

Insect Sting Allergy

1. Epidemiology
2. Aetiology (meet the insects)
3. Clinical presentation
4. Risk of future systemic reactions
5. Investigations
6. Management
 a) Prevention
 b) Local reactions
 c) Systemic reactions
 d) Venom immunotherapy
Investigations

• Options
 – Insect venom skin test
 – Insect venom specific IgE
 – Sting challenge
Investigations

• Options
 – Insect venom skin test
 – Insect venom specific IgE
 – Sting challenge
 • Considered impractical and unethical1,2
 • Even when sting challenge causes no reaction \rightarrow there remains a 15-20\% chance of a systemic reaction from a subsequent sting3

1 vanderLinden et al. JACI 1994;94:151-9
2 Reisman RE. JACI 1993;91:1100
3 Franken et al. JACI 1994;93:431-6
Investigations

• Insect venom skin test
 – Method¹
 • Intradermal skin test – start with lowest concentration (0.001 mcg/mL) and increase to highest (1mcg/mL)
 • Skin prick test – may be used initially for patients with a history of severe reaction (at no higher than 1 mcg/mL)

Investigations

• Insect venom skin test
 – The preferred diagnostic method
 – High degree of sensitivity (>65%) and proven safety1,2
 – Use in complement with venom sIgE
 • 15-20% with positive skin tests have negative sIgE3,4
 • 5-10% with negative skin tests have positive sIgE4

Investigations

• Possible reasons for a negative skin test in a patient with a convincing insect sting allergic reaction
 – True reaction but false negative skin test\(^1\)
 – Loss of skin test sensitivity with time\(^2\)
 – Anergic phase (if performed within several weeks of a reaction)\(^3\)

• Action
 – Double check with serum venom sIgE\(^4\)
 – Repeat skin tests 1-6 months later\(^3\)
 – Where both skin test and sIgE is negative (1% of patients) → consider proceeding straight to immunotherapy, with or without a sting challenge\(^1,5\)

Insect Sting Allergy

1. Epidemiology
2. Aetiology (meet the insects)
3. Clinical presentation
4. Risk of future systemic reactions
5. Investigations
6. Management
 a) Prevention
 b) Local reactions
 c) Systemic reactions
 d) Venom immunotherapy
1. Prevention measures (ASCIA)
 - Cover up - wear long sleeves & trousers (when gardening), and shoes outdoors
 - ‘Don’t be a flower’ – avoid perfumes, bright coloured clothing and flowery prints
 - Avoid drinking blindly from drink cans (wasps)
 - Remove nearby nests professionally (home & school)
 - Drive with windows up

http://www.allergy.org.au/content/view/172/154/
Management

2. Local reactions

– Acute management\(^1,2\)
 • Oral H1-antihistamines: use second generation, less-sedating antihistamines
 • Oral corticosteroids: consider if oedema is spreading
 • Ice pack and simple analgesia
 • Antibiotics are rarely required

– Reassure and explain natural history of 10% chance of future systemic allergic reaction

1. Moffitt et al. JACI 2004;114;869-86.
2. Severino et al. Current Opinion in Allergy and Clinical Immunology 2009;9:334-337
Management

3. Anaphylactic reactions
 – Prescribe Epipen Junior or Epipen
 – Optimise asthma management
 – Anaphylaxis action plan
 – Immunotherapy
ACTION PLAN FOR Anaphylaxis (insect allergy)

for use with EpiPen® or EpiPen® Jr adrenaline autoinjectors

Name: ___________________________
Date of birth: _______________________

Insect allergies: _______________________
Other allergies: _______________________
Family/carer name(s): _______________________

Work Ph: _______________________
Home Ph: _______________________
Mobile Ph: _______________________
Plan prepared by: _______________________
Signed: _______________________
Date: _______________________

How to give EpiPen® or EpiPen® Jr

1. Form fist around EpiPen® and pull off grey safety cap.
2. Place black end against outer thigh (with or without clothing).
3. Push down hard until a click is heard or felt and hold in place for 10 seconds.
4. Remove EpiPen® and do not touch needle. Massage injection site for 30 seconds.

MILD TO MODERATE ALLERGIC REACTION

- swelling of lips, face, eyes
- hives or welts

ACTION

- If sting can be seen, flick it out immediately (but do not remove ticks)
- Stay with person and call for help
- Give medications (if prescribed) _______________________
- Locate EpiPen® or EpiPen® Jr
- Contact family/carer

Watch for any one of the following signs of Anaphylaxis

ANAPHYLAXIS (SEVERE ALLERGIC REACTION)

- Abdominal pain, vomiting
- Difficult/noisy breathing
- Swelling of tongue
- Swelling/tightness in throat
- Difficulty talking and/or hoarse voice
- Wheezing or persistent cough
- Loss of consciousness and/or collapse
- Pale and floppy (young children)

ACTION

1. Give EpiPen® or EpiPen® Jr
2. Call ambulance* - telephone 000 (Aus) or 111 (NZ)
3. Lay person flat and elevate legs. If breathing is difficult, allow to sit but do not stand
4. Contact family/carer
5. Further adrenaline doses may be given if no response after 5 minutes (if another adrenaline autoinjector is available)

If in doubt, give EpiPen® or EpiPen® Jr

EpiPen® Jr is generally prescribed for children aged 1.5 years.
*Medical observation in hospital for at least 4 hours is recommended after anaphylaxis.

Additional information
Venom Immunotherapy

• Aims
 – Indicated in patients with positive diagnostic test and systemic reaction to a sting\(^1\)
 – Ultimate goal is to prevent fatal anaphylaxis\(^2\)

1. Moffitt et al. JACI 2004;114;869-86.
Venom Immunotherapy

• Regimen
 – Build-up phase
 • Varies between 6 hours to 4 months\(^1\)
 • The more rapid regimens of VIT appear to have the same or greater safety as traditional regimen\(^2,3,4\)
 – Maintenance phase
 • The target dose is 100 mcg 4-weekly\(^1\)
 • Some patients are eventually stretched out to 8-12 weekly\(^5,6\)

FIG 2. Four dose regimens reported for VIT depicting each dose given during the initial build-up stage of treatment. In the ultrarush schedule (UR-VIT) doses are given every 30 minutes to reach the full dose in 6 hours. In the rush schedule (R-VIT) doses are given every 30 minutes for 10 doses on day 1, 4 doses on day 2, and 2 doses on day 3. The modified rush schedule (MR-VIT) is given once weekly for 8 weeks, and the traditional schedule (T-VIT) is given weekly for 4 months or more.

1. Golden DBK. JACI 2005;115:439-47 (Figure).
Venom Immunotherapy

• Efficacy
 – Without VIT, risk of anaphylaxis is 40-60% after a systemic allergic reaction\(^1\)
 – With VIT, risk of systemic allergic reaction reduced to 5% (wasps) to 15% (honeybees)\(^2\)

FIG 3. Natural history of insect sting allergy showing the risk of systemic reaction to a sting in untreated patients (solid line) and in patients who received VIT (dashed lines) for a duration of either 1 to 2 years or for a mean of 6 years. Reprinted with permission from Golden DBK, Kagey-Sobotka A, Lichtenstein LM. Survey of patients after discontinuing venom immunotherapy. J Allergy Clin Immunol 2000;105:389.

Table 1. Classification of abnormal sting reactions and side-effects. Modified from Mueller (4)

<table>
<thead>
<tr>
<th>Type of reaction</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0) Large local</td>
<td>Swelling >10 cm for >2 days</td>
</tr>
<tr>
<td>1) Minor</td>
<td>Itching, urticaria, edema, malaise, anxiety</td>
</tr>
<tr>
<td>2) General</td>
<td>Chest tightness, palpitations, dizziness, nausea, abdominal pain</td>
</tr>
<tr>
<td>3) Severe</td>
<td>Somnolence, respiratory difficulties, vomiting, diarrhea, incontinence</td>
</tr>
<tr>
<td>4) Anaphylactic</td>
<td>Confusion, drop in blood pressure, feeling of impending doom, unconsciousness, cyanosis, death</td>
</tr>
</tbody>
</table>

![Injections with side-effects (%)](image)

- 19 centres, 840 patients, 26,601 injections
- 71% with *Vespula*- and 27% with honeybee venom extract
- Systemic side effects occurred in 20% of patients (1.9% of injections during build up phase and 0.5% of injections during maintenance)
- Majority of reactions are mild and only 1/3 required medical treatment

Venom Immunotherapy

- Risk factors for relapse $^{1-6}$
 1. More severe allergic reaction on history
 2. Honey bee allergy
 3. Systemic reaction during VIT
 4. Less than 5 years of VIT

1. Muller et al. JACI 1992;89:529-35
2. Golden et al. JACI 1998;101:298-305
4. Lerch et al. JACI 1998;101:606-12
5. Reisman et al. JACI 1993;92:831-6
Summary

1. Majority of children (70%) develop isolated cutaneous symptoms when stung by a bee or wasp.
2. These children have a <10% risk of a future systemic allergic reaction.
3. Children who have had anaphylaxis are at a 40% risk of a future systemic allergic reaction and should be commenced on VIT.
Summary

4. VIT reduces the risk of a systemic allergic reaction to 5% (wasp) to 15% (bees)

5. Risk of relapse from VIT is increased in subjects who have had: 1) a more severe allergic reaction, 2) honeybee allergy, 3) systemic allergic reaction during VIT, and 4) < 5 years of treatment;

6. Venom skin test or serum sIgE is unhelpful as a screening tool for candidates for VIT.