Non-nutritive sucking habits

Thumb, finger and dummy sucking are “non-nutritive” sucking habits. Non-nutritive sucking habits are part of the child’s natural development with very little effect to the primary dentition. However if these habits are not discontinued after the first permanent teeth start to erupt they can interfere with dental development and tooth alignment. Research has shown that dummies are easier to discontinue than thumb or finger sucking. The following are some strategies to use when trying to stop a digit sucking habit:

• Offer praise and encouragement for not sucking.
• Distract the child with good humored comments and encouragement.
• Reminders such as a cloth or unpleasant tasting nail painting can help.

Parents need to be patient since the first days without sucking are the most difficult.

The following are some strategies to use when trying to stop a digit sucking habit:

1. There is likely to be a formal State policy on oral health for infants and children that will set out the health promotion activities required of your service. Are you aware of this policy?

2. Have you considered how health education for oral health could be incorporated into routine interviews with parents or into parent group activities? For example, are you encouraging your families to establish an “oral care routine” and talking about an adequate diet? Are you instructing your families on how to brush? Do you encourage parents to take their infant to the dentist for a first visit at the age of 18 months?

3. Do you regularly undertake mouth inspections for children under 2 years?

4. Are you aware of the water fluoridation status in your area?

5. Do you know where your local dental services are located? Is there a public dental health clinic nearby that you could refer families to?

References

• Country Kids Improved Dental Status: A program that is a collaboration between the RCH, MCP, Centre for Community Child Health and NHMRC.

Reflection Questions

1. There is likely to be a formal State policy on oral health for infants and children that will set out the health promotion activities required of your service. Are you aware of this policy?

2. Have you considered how health education for oral health could be incorporated into routine interviews with parents or into parent group activities? For example, are you encouraging your families to establish an “oral care routine” and talking about an adequate diet? Are you instructing your families on how to brush? Do you encourage parents to take their infant to the dentist for a first visit at the age of 18 months?

3. Do you regularly undertake mouth inspections for children under 2 years?

4. Are you aware of the water fluoridation status in your area?

5. Do you know where your local dental services are located? Is there a public dental health clinic nearby that you could refer families to?

Dental caries

Dental caries is an infectious disease that is modified by diet. For caries to develop three elements are necessary:
1. bacteria (Streptococcus mutans),
2. susceptible host (tooth), and
3. a fermentable carbohydrate (sugar and refined flour).

Streptococcus mutans (S. mutans) bacteria is the major bacteria implicated in dental caries. Its presence in the oral cavity (in the form of soft white debris known as plaque) leads to the conversion of fermentable carbohydrates (mainly sucrose) into acid which then proceeds to demineralisation of the hard tooth tissues which eventually cavitate, causing a hole or decay in the tooth.

Children are not born with S. mutans but their mouths can be colonised by them as early as 6 months of age. Research shows that the earlier the bacterial colonisation, the higher the risk for dental caries (van Houte et al. 1981). Transmission and inoculation of an infant’s mouth with S. mutans occurs mainly from the primary caregiver (usually the mother). If the caregiver has high S. mutans counts themselves then sharing spoon, cups and other utensils, kisses on the mouth and cleaning the dummy in the mother’s mouth all promote transmission. Contamination by S. mutans can be delayed by reducing plaque levels in the caries’ oral cavity and minimising the opportunity to share bacteria. Consequently, it is important for mothers to maintain a caries-free mouth and good oral hygiene.

Dental caries can occur as soon as the first tooth erupts but the dentition remains susceptible throughout life. However during the first 12 months post eruption the enamel surfaces of the teeth are immature and consequently susceptibility is high.

Sugars, mostly sucrose and its metabolites, provide ideal substrate for the bacteria to adhere to the tooth surface and produce the acids that can then dissolve the tooth enamel leading to decay.

One of the first signs of decay are small white lesions running along the gum line (Figure 1). These lesions represent the early signs of decay as the enamel is being demineralised but the surface remains intact. At this stage it is possible to reverse the process by promoting remineralisation and preventing cavitation.

Flouride

Flouride is very effective in preventing and slowing the decay process. Flouride exposure is important from the moment the tooth first erupts in the oral cavity because enamel is still immature and therefore more susceptible to acid production by bacteria. Flouride becomes incorporated into the enamel crystals making them more resistant to acid demineralisation. People exposed to flouridated water (i.e., metropolitan Melbourne) have better oral health when compared to residents in a non-flouridated community (Houlton et al. 1994). Data from Dental Health Services Victoria (DHSV) show a 45% reduction in caries activity in the primary dentition in six-year olds and a 38% reduction in caries lesions in twelve year old children living in a flouridated community (DHSV, 2004). At a public health level, water flouridation is a cost-effective, inexpensive method of preventing dental caries but not all children are exposed to the benefits of flouridated water supply.

Apart from the water supply, flouridated toothpaste is the main source of flouride in Australia. Parents should wipe their infants teeth with a smear of a junior (low flouride) toothpaste as soon as the first tooth comes in to the mouth using a gauze or clean face cloth. A smear of toothpaste should be applied twice daily to an infant’s teeth.

Families living in remote areas or who use tank water may not be exposed to the benefits of flouride. In this case, adult flouridated toothpaste may be appropriate. It is the best way to deliver flouride to the teeth.

The use of flouride supplements (in the form of drops or tablets) is no longer routinely recommended. This source of flouride is essentially taken systemically and it is now recognised that flouride is most effective topically, with teeth being exposed regularly to low doses such as in the water supply or with twice daily toothpaste applications. As the child gets older he/she can be encouraged to brush their own teeth. However toothbrushing should be supervised by the parent until around the age of 4 years of age. It is important that toothbrushing is a “fun and interesting time” for both parents and children.

Diet

Given that it is frequency of sugar intake rather than volume that is important in predicting decay risk, sugars and any other sweeteners should not be added to an infant bottle which they may then hold and suck on in a prolonged fashion. Only four things should go into the baby’s bottle: water, breast milk, infant formula and/or milk.

An infant should not be put to bed with a bottle. It is recommended that bottle feeding itself be discontinued by 12 months of age and replaced by a sipping cup.

Should a child prefer to take the sipping cup to bed, it should contain only water.

Healthy snacks include milk, dry biscuits, yoghurts and fresh fruits that contains low amount of sugars. Foods such as fruit bars, fruit slices, dried fruits, and many breakfast cereals contains high amount of sugars. Sugary foods, in particular sweet sticky items, should be eaten at main meal times and not as snacks, several times during the day. It is important to encourage parents to read the label for sugar content. (See Figure 3.).

Plain milk, tap water - because of flouride content, fruit smoothies are delicious healthy drinks. Fresh fruits have higher vitamin content and are a better choice when compared to fruit juices and cordials that are acidic and high in sugar. Soft drinks and particularly artificially flavored carbonated drinks should also be avoided.

Dummies should not be dipped in honey or any other sweet drink.

Sugars in food and reading labels

Most people will probably think of cane sugar (sucrose) when someone says “sugar”. Sugar can take many forms including white, raw or brown sugar, honey or corn syrup, but all are essentially sucrose.

There are also other types of sugars in the foods we eat. Sugar can occur naturally in some foods, such as fruit and dairy products. The main sugar in fruit is fructose; and in milk the main sugar is lactose. Other sugars in food include galactose and maltose. All have the same amount of kilojoules and energy.

On food labels added sugar may be listed as:
• Brown sugar
• Corn syrup
• Dextrose
• Fructose
• Glucose
• Golden syrup
• Honey
• Lactose
• Malt

If any of these sugar ingredients is listed as one of the first three ingredients, it is likely that the product is high in sugar.

Food labels provide the total amount of sugars present in the nutrition information panel. The total includes “added sugar” as well as naturally occurring sugars from fresh, dried, canned and frozen fruit and milk components. A product may not have much “added sugar” but still be high in “sugars”. If much of the sugars come from fruit or milk components, for example breakfast cereals with dried fruit. In contrast, if a product is high in sugars and it does not contain fruit or milk then most of the sugar is coming from “added sugar.”

Dietary Sugars

Dietary sugars are all composed of simple sugars.

Simple sugars are sugars that are present naturally in fruit, milk, and baby foods, and also sugars that have been added to food products.

Simple sugars are classified as monosaccharides and disaccharides.

Monosaccharides are sugars that are not composed of two or more simple sugars.

Disaccharides are sugars that are composed of two simple sugars.

Simple sugars are: monosaccharides and disaccharides.

Examples of monosaccharides include: glucose, fructose, galactose.

Examples of disaccharides include: lactose (milk sugar), sucrose (sugar cane), maltose.

There are two types of monosaccharides: reducing monosaccharides and non-reducing monosaccharides.

Reducing monosaccharides, such as glucose and fructose, can be cleaved into two smaller molecular units; non-reducing monosaccharides cannot be cleaved into smaller molecular units.

Reducing monosaccharides are: glucose and fructose.

Non-reducing monosaccharides are: galactose, xylose.

There are two types of disaccharides: reducing disaccharides and non-reducing disaccharides.

Reducing disaccharides can be cleaved into two monosaccharides; non-reducing disaccharides cannot be cleaved into two monosaccharides.

Reducing disaccharides are: lactose, maltose, sucrose.

Non-reducing disaccharides are: cellobiose, isomaltose.

Simple sugars are also classified as: naturally occurring sugars and added sugars.

Naturally occurring sugars: sugars found in milk, fruit, and baby foods.

Added sugars: sugars added to food products, such as: cane sugar, beet sugar, high fructose corn syrup, corn syrup solids.

Sugars are further classified as: simple sugars, complex sugars, and fortified sugars.

Simple sugars are: sugars that are present naturally in fruit, milk, and baby foods, and also sugars that have been added to food products.

Complex sugars are sugars that are composed of two or more simple sugars.

Fortified sugars are sugars that are added to food products to increase their sweetness.

Added sugars are sugars that are added to food products to increase their sweetness.

Sugars are further classified as: simple sugars, complex sugars, and fortified sugars.

Simple sugars are: sugars that are present naturally in fruit, milk, and baby foods, and also sugars that have been added to food products.

Complex sugars are sugars that are composed of two or more simple sugars.

Fortified sugars are sugars that are added to food products to increase their sweetness.

Added sugars are sugars that are added to food products to increase their sweetness.

Sugars are further classified as: simple sugars, complex sugars, and fortified sugars.

Simple sugars are: sugars that are present naturally in fruit, milk, and baby foods, and also sugars that have been added to food products.

Complex sugars are sugars that are composed of two or more simple sugars.

Fortified sugars are sugars that are added to food products to increase their sweetness.

Added sugars are sugars that are added to food products to increase their sweetness.

Sugars are further classified as: simple sugars, complex sugars, and fortified sugars.

Simple sugars are: sugars that are present naturally in fruit, milk, and baby foods, and also sugars that have been added to food products.

Complex sugars are sugars that are composed of two or more simple sugars.

Fortified sugars are sugars that are added to food products to increase their sweetness.

Added sugars are sugars that are added to food products to increase their sweetness.

Sugars are further classified as: simple sugars, complex sugars, and fortified sugars.

Simple sugars are: sugars that are present naturally in fruit, milk, and baby foods, and also sugars that have been added to food products.

Complex sugars are sugars that are composed of two or more simple sugars.

Fortified sugars are sugars that are added to food products to increase their sweetness.

Added sugars are sugars that are added to food products to increase their sweetness.

Sugars are further classified as: simple sugars, complex sugars, and fortified sugars.

Simple sugars are: sugars that are present naturally in fruit, milk, and baby foods, and also sugars that have been added to food products.

Complex sugars are sugars that are composed of two or more simple sugars.

Fortified sugars are sugars that are added to food products to increase their sweetness.

Added sugars are sugars that are added to food products to increase their sweetness.

Sugars are further classified as: simple sugars, complex sugars, and fortified sugars.

Simple sugars are: sugars that are present naturally in fruit, milk, and baby foods, and also sugars that have been added to food products.

Complex sugars are sugars that are composed of two or more simple sugars.

Fortified sugars are sugars that are added to food products to increase their sweetness.

Added sugars are sugars that are added to food products to increase their sweetness.
Dental Caries

Dental caries is an infectious disease that is modified by diet. For caries to develop three elements are necessary: 1. bacteria (Streptococcus mutans), 2. susceptible host (tooth), and 3. a fermentable carbohydrate (sugar and refined flour). Streptococcus mutans (S. mutans) bacteria is the major bacteria implicated in dental caries. Its presence in the oral cavity (in the form of soft white debris known as plaque) leads to the conversion of fermentable carbohydrates (mainly sucrose) but all are essentially sucrose.

There are also other types of sugar in the foods we eat. Sugar can occur naturally in some foods, such as fruit and dairy products. The main sugar in fruit is fructose; and in milk the main sugar is lactose. Other sugars in foods include glucose and maltose. All have the same amount of kilojoules and energy.

On food labels added sugar may be listed as:

- Brown sugar
- Corn syrup
- Dextrose
- Glucose
- Honey
- Lactose
- Malt
- Molasses
- Maltose
- Sucrose
- Xylitol

Healthy snacks include milk, dried fruit, yoghurts and fresh fruits that contains low amount of sugars. Foods such as fruit bars, fruit smoothies, dried fruits, and many breakfast cereals contains high amount of sugars. Sugary foods, in particular sweet sticky items, should be eaten at main meal times and not as snacks, several times during the day. It is important to encourage parents to read the label for sugar content. (See Figure 3.).

Plain milk, tap water – because of fluoride content, fruit smoothies are delicious healthy drinks. Fresh fruits have higher vitamin content and are a better choice when compared to fruit juices and cordials that are acidic and high in sugar. Soft drinks and particularly artificially flavoured carbonated drinks should also be avoided. Dummys should not be dipped in honey or any other sweet drink.

Fluoride

Fluoride is very effective in preventing and slowing the decay process. Fluoride exposure is important from the moment the first teeth erupt in the oral cavity because enamel is still immature and therefore more susceptible to acid produced by bacteria. Fluoride becomes incorporated into the enamel crystals making them more resistant to acid demineralisation. People exposed to fluoridated water (i.e., metropolitan Melbourne) have better oral health when compared to residents in non-fluoridated community (DHS, 2004a). Data from Dental Health Services Victoria (DHSV) show a 45% reduction in caries activity in the primary dentition in six-year olds and a 28% reduction in caries lesions in twelve year old children living in a fluoridated community (DHS, 2004). At a public health level, water fluoridation is a cost-effective, inexpensive method of preventing dental caries but not all children are exposed to the benefits of fluoridated water supply.

Apart from the water supply, fluoridated toothpaste is the main source of fluoride in Australia. Parents should wipe their infants teeth with a smear of a Junior (low fluoride) toothpaste as soon as the first teeth come in to the mouth using a gauze or clean face cloth. A smear of toothpaste should be applied twice daily to an infant’s teeth. Parents living in remote areas or who use tank water may not be exposed to the benefits of fluoride. In this case, adult fluoridated toothpaste may be appropriate. It is the best way to deliver fluoride to the teeth.

The use of fluoride supplements (in the form of drops or tablets) is no longer routinely recommended. This source of fluoride is essentially taken systemically and it is now recognised that fluoride is most effective topically, with twice daily toothpaste applications. As the child gets older he/she can be encouraged to brush their own teeth. However toothbrushing should be supervised by the parent until around the age of 6 years of age. It is important that toothbrushing is a “fun and interesting time” for both parents and children.

Diet

Given that it is frequency of sugar intake rather than volume that is important in predicting decay risk, sugars and any other sweeteners should not be added to an infant bottle which they may then hold and suck on in a prolonged fashion. Only three things should go into the baby’s bottle: water, breast milk and infant formula.

An infant should not be put to bed with a bottle. It is recommended that bottle feeding itself be discontinued by 12 months of age and replaced by a sipping cup. Should a child prefer to take the sipping cup to bed, it should contain only water.

Healthy snacks include milk, dried fruit, yoghurts and fresh fruits that contains low amount of sugars. Foods such as fruit bars, fruit smoothies, dried fruits, and many breakfast cereals contains high amount of sugars. Sugary foods, in particular sweet sticky items, should be eaten at main meal times and not as snacks, several times during the day. It is important to encourage parents to read the label for sugar content. (See Figure 3.).

Plain milk, tap water – because of fluoride content, fruit smoothies are delicious healthy drinks. Fresh fruits have higher vitamin content and are a better choice when compared to fruit juices and cordials that are acidic and high in sugar. Soft drinks and particularly artificially flavoured carbonated drinks should also be avoided. Dummys should not be dipped in honey or any other sweet drink.

(Diagram Kids, 2004)

One of the first signs of decay are small white lesions running along the gum line (Figure 1). These lesions represent the early signs of decay as the enamel is being demineralised but the surface remains intact. At this stage it is possible to reverse the process by promoting remineralisation and preventing cavitation.

Children are not born with S. mutans but their mouths can be colonised by them from as early as 6 months of age. Research shows that the earlier the bacterial colonisation, the higher the risk for dental caries (van Hoore et al. 1981). Transmission and inoculation of an infant’s mouth with S. mutans occurs mainly from the primary caregiver (usually the mother). If the caregiver has high S. mutans counts themselves then sharing spoon, cups and other utensils, kisses on the mouth and cleaning the dummy in the mother’s mouth all promote transmission. Contamination by S. mutans can be delayed by reducing plaque levels in the caries’ oral cavity and minimizing the opportunity to share bacteria. Consequently, it is important for mothers to maintain a caries-free mouth and good oral hygiene.

Dental caries can occur as soon as the first teeth erupt but the dentition remains susceptible throughout life. However during the first 12 months post eruption the enamel surfaces of the teeth are immature and consequently susceptibility is high. Sugars, mostly sucrose and its metabolites, provide ideal substrate for the bacteria to adhere to the tooth surface and produce the acids that can then dissolve the tooth enamel leading to decay.

Literature shows that the frequency of sugar intake is more important in predicting caries risk than the amount of sugar consumed. The more often the tooth is exposed to acid attacks, the longer the substrate is available in contact with the surface of the teeth, the higher the chance for decay to occur (Gussey et al. 2006).

Figure 1. White spot lesions

it is recommended that child health nurses conduct mouth inspections as part of regular health assessments at 2-6 weeks, 6 months, 12 months, 18-21 months, 2 and 3 year olds and 4-5 year olds visits. The population under 2 years of age is the most vulnerable, because very few children at this age will ever see a dentist (Black-Smith 2003). Therefore this population may not be routinely exposed to dental health education.

The recommended approach to look at the infant or toddlers mouth is the lap-to-lap position (see Figure 2.). In all visits it is important to look for a healthy oral cavity with pale pink, moist gums, that do not bleed on brushing and that are free of unusual ulcers and/or sores. After the eruption process starts around 6 months of age, it is important to observe the presence of plaque, white spot lesions (Figure 1.) and dental decay.

Figure 2. Lap-to-lap position (Country Kids, 2004)
Dental Caries

Dental caries is an infectious disease that is modified by diet. For caries to develop three elements are necessary: 1. bacteria (Streptococcus mutans), 2. susceptible host (tooth), and 3. a fermentable carbohydrate (sugar and refined flour). Streptococcus mutans (S. mutans) is the major bacteria implicated in dental caries. Its presence in the oral cavity (in the form of soft white debris known as plaque) leads to the conversion of fermentable carbohydrates (mainly sucrose) into acid which then proceeds to demineralisation of the hard tooth tissues which eventually cavitate, causing a hole or decay in the tooth.

Children are not born with S. mutans but their mouths can be colonised by them as early as 6 months of age. Research shows that the earlier the bacteriological colonisation, the higher the risk for dental caries (van Hoore et al. 1981). Transmission and inoculation of an infant’s mouth with S. mutans occurs mainly from the primary caregiver (usually the mother). If the caregiver has high S. mutans counts themselves then sharing spoon, cups and other utensils, kisses on the mouth and cleaning the dummy in the mother’s mouth all promote transmission. Contamination by S. mutans can be delayed by reducing plaque levels in the carer’s oral cavity and minimising the opportunity to share bacteria. Consequently, it is important for mothers to maintain a caries-free mouth and good oral hygiene.

Dental caries can occur as soon as the first tooth erupts but the dentition remains susceptible throughout life. However, during the first 12 months post-eruption the enamel surfaces of the teeth are immature and consequently susceptibility is high.

Sugars, mostly sucrose and its metabolites, provide ideal substrate for the bacteria to adhere to the tooth surface and produce the acids that can then dissolve the tooth enamel leading to decay.

Figure 1. White spot lesions www.gc-mantova.com

It is recommended that child health nurses conduct mouth inspections as part of regular health assessments at 2-week, 6-8 months, 12 months, 18-21 months, 2 and 3 year olds and 4-5 year olds visits. The population under 2 years of age is the most vulnerable, because very few children this age will ever see a dentist (Black-Smith 2003). Therefore this population may not be routinely exposed to dental health education.

The recommended approach to look at the infant or toddlers mouth is the lap-to-lap position (see Figure 2), in all visits it is important to look for a healthy oral cavity with pale pinky, moist gums, that do not bleed on brushing and that are free of unusual ulcers and/or sores. After the eruption process starts around 6 months of age it is important to observe the presence of plaque, white spot lesions (Figure 1) and dental decay.

Figure 2. Lap-to-lap position (Country Kids, 2004)

Fluoride

Fluoride is very effective in preventing and slowing the decay process. Fluoride exposure is important from the moment the tooth first erupts in the oral cavity because enamel is still immature and therefore more susceptible to acid production by bacteria. Fluoride becomes incorporated into the enamel crystals making them more resistant to acid demineralisation. People exposed to fluoridated water (i.e., metropolitan Melbourne) have been shown when compared to residents in a non-fluoridated community (DHSV, 2004a). Data from Dental Health Services Victoria (DHSV) show a 45% reduction in caries activity in the primary dentition in six-year olds and a 38% reduction in caries lesions in twelve year old children living in a fluoridated community (DHSV, 2004). At a public health level, water fluoridation is a cost-effective, inexpensive method of preventing dental caries but not all children are exposed to the benefits of fluoridated water supply.

Apart from the water supply, fluoridated toothpaste is the main source of fluoride in Australia. Parents should wipe their infants teeth with a smear of a Junior (low fluoride) toothpaste as soon as the first tooth comes in to the mouth using a gauze or clean face cloth. A smear of toothpaste should be applied twice daily to an infant’s teeth.

Families living in remote areas or who use tank water may not be exposed to the benefits of fluoride. In this case, adult fluoridated toothpaste may be appropriate. It is the best way to deliver fluoride to the teeth.

The use of fluoride supplements (in the form of drops or tablets) is no longer routinely recommended. This source of fluoride is essentially taken systemically and it is now recognised that fluoride is most effective topically, with teeth being exposed regularly to low doses such as in the water supply or with twice daily toothpaste applications.

As the child gets older he/she can be encouraged to brush their own teeth. However toothbrushing should be supervised by the parent until around the age of 8 years of age. It is important that toothbrushing is a “fun and interesting time” for both parents and children.

Figure 3. Sugars in food and reading labels

Diet

Given that it is frequency of sugar intake rather than volume that is important in predicting decay risk, sugars and any other sweeteners should not be added to an infant bottle which they may then hold and suck on in a prolonged fashion. Only four things should go into the baby’s bottle: water, breast milk, infant formula and/or milk.

An infant should not be put to bed with a bottle. It is recommended that bottle feeding itself be discontinued by 12 months of age and replaced by a sipping cup. Should a child prefer to take the sipping cup to bed, it should contain only water.

Healthy snacks include milk, dry biscuits, yoghurts and fresh fruits that contain low amount of sugars. Foods such as fruit bars, fruit strips, dried fruits, and many breakfast cereals contain high amount of sugars. Sugary foods, in particular sweet sticky items, should be eaten at main meal times and not as snacks, several times during the day. It is important to encourage parents to read the label for sugar content. (See Figure 3.).

Plain milk, tap water - because of fluoride content, fruit smoothies are delicious healthy drinks. Fresh fruits have higher vitamin content and are a better choice when compared to fruit juices and cordials that are acidic and high in sugar. Soft drinks and particularly artificially flavored carbonated drinks should also be avoided.

Dummies should not be dipped in honey or any other sweet drink.

(Country Kids, 2004)
Non-nutritive sucking habits

Sucking habits include non-nutritive sucking habits such as thumb or finger sucking, which are related to the child’s natural development with very little effect to the overall quality of life. Wide variation in timing of eruption exists for the primary dentition. The first teeth can start to appear at any time from the first 18–20 months onwards but some infants are very delayed. In general there is little worry about the primary teeth do not come through over the first 18–20 months. There are a few rare conditions (syndromes) that may be associated with missing teeth but most children will develop their teeth at some point. Of more concern is when the teeth erupt in a spacial fashion, the order of eruption being more important than the actual timing. Should there be a concern regarding the time or pattern of eruption of the primary dentition then a referral to a specialist paediatric dentist would be appropriate. Such a specialist will decide on the need for further investigations.

Reflection Questions

1. There is likely to be a formal State policy on oral health for infants and children that will set out the health promotion activities required of your service. Are you aware of this policy?

2. Have you considered how health education for oral health could be incorporated into routine interviews with parents or into parent group activities? For example, are you encouraging your families to establish an “oral care routine” and taking about an adequate diet? Are you instructing your families on how to brush? Do you encourage parents to take their infant to the dentist for a first visit at the age of 18 months?

3. Do you regularly undertake mouth inspections for children under 2 years?

4. Are you aware of the water fluoridation status in your area?

5. Do you know where your local dental services are located? Is there a public dental health clinic nearby that you could refer families to?

Community Paediatric Review Index 2004 – 2006

<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading with young children</td>
<td>Extracted from Let’s Read Literature Review</td>
<td>Vol 13 No 1 May 2004</td>
</tr>
<tr>
<td>Dental developmental and the new universal vaccination program</td>
<td>Associate Professor John G. Mears</td>
<td>Vol 13 No 2 August 2004</td>
</tr>
<tr>
<td>Food allergy</td>
<td>Drs Joanne Smart and Minli Tang</td>
<td>Vol 13 No 3 September 2004</td>
</tr>
<tr>
<td>Healthupdate</td>
<td>Vol 13 No 3 September 2004</td>
<td></td>
</tr>
<tr>
<td>Pneumococcal disease and the new universal vaccination program</td>
<td>Vol 14 No 1 February 2005</td>
<td></td>
</tr>
<tr>
<td>Vegetarian eating patterns for younger children Kay Gibbons</td>
<td>Vol 14 No 1 February 2005</td>
<td></td>
</tr>
<tr>
<td>Pickets in the 21st century</td>
<td>Dr Christine Rodda</td>
<td>Vol 14 No 2 May 2005</td>
</tr>
<tr>
<td>Pickets Parent Information (also translated into Arabic)</td>
<td>Vol 14 No 2 May 2005</td>
<td></td>
</tr>
<tr>
<td>School readiness</td>
<td>Professor Frank Obergard</td>
<td>Vol 14 No 3 September 2005</td>
</tr>
<tr>
<td>School readiness Parent Information</td>
<td>Vol 14 No 3 September 2005</td>
<td></td>
</tr>
<tr>
<td>Overweight and obesity in under 5’s</td>
<td>Dr Michele Campbell</td>
<td>Vol 14 No 3 September 2005</td>
</tr>
<tr>
<td>Childhood depression: Early risk and resilience David Haws</td>
<td>Vol 14 No 4 November 2005</td>
<td></td>
</tr>
<tr>
<td>Introducing solids to infants Penny Scallan</td>
<td>Vol 14 No 4 November 2005</td>
<td></td>
</tr>
<tr>
<td>Body Mass Index (BMI) for children</td>
<td>Centre for Community Child Health</td>
<td>Vol 15 No 1 May 2006</td>
</tr>
<tr>
<td>Infant Parent-Interaction: The beginnings Dr Louise Neuman</td>
<td>Vol 15 No 1 May 2006</td>
<td></td>
</tr>
<tr>
<td>Body Mass Index (BMI) for children Professional information</td>
<td>Vol 15 No 1 May 2006</td>
<td></td>
</tr>
</tbody>
</table>

Primary teeth usually erupt in the following order:

<table>
<thead>
<tr>
<th>Teeth</th>
<th>Upper Jaw</th>
<th>Lower Jaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>E) Second molar</td>
<td>23-31 10-12</td>
<td>9-11 6-7</td>
</tr>
<tr>
<td>D) First molar</td>
<td>14-28 9-11</td>
<td>8-10 6-7</td>
</tr>
<tr>
<td>C) Canine</td>
<td>17-23 9-12</td>
<td>7-10 5-7</td>
</tr>
<tr>
<td>B) Lateral incisor</td>
<td>9-16 7-8</td>
<td>6-10 5-7</td>
</tr>
<tr>
<td>A) Central incisor</td>
<td>6-10 6-7</td>
<td>5-7 4-5</td>
</tr>
</tbody>
</table>

(Texas Department of State Health Services – Healthy Mouths, 2008)
Non-nutritive sucking habits

Thumbs, fingers and dummy sucking are “non-nutritive” sucking habits. Non-nutritive sucking habits are part of the child’s natural development with very little effect to the primary dentition. However if these habits are not discontinued after the first permanent teeth start to erupt they can interfere with dental development and tooth alignment. Research has shown that dummies are easier to discontinue than thumbs or finger sucking. The following are some strategies to use when trying to stop a digit sucking habit:

- Offer praise and encouragement for not sucking.
- Distract the child with good humoured comments and encouragement.
- Reminders such as a cloth or unpleasant tasting nail painting can help.

Parents need to be patient since the first days without sucking are the most difficult.

References

Reflection Questions

1. There is likely to be a formal State policy on oral health for infants and children that will set out the health promotion activities required of your service. Are you aware of this policy?

2. Have you considered how health education for oral health could be incorporated into routine interviews with parents or into parent group activities? For example, are you encouraging your families to establish an “oral care routine” and taking about an adequate diet? Are you instructing your families on how to brush? Do you encourage parents to take their infant to the dentist for a first visit at the age of 18 months?

3. Do you regularly undertake mouth inspections for children under 2 years?

4. Are you aware of the water fluoridation status in your area?

5. Do you know where your local dental services are located? Is there a public dental health clinic nearby that you could refer families to?

Primary teeth usually erupt in the following order:

- Upper jaw: Erupt (in months) Shed (in years)
 - A) Central incisor 8-12 6-7
 - B) Lateral incisor 9-13 7-8
 - C) canine 16-22 10-12
 - D) first molar 13-19 9-11
 - E) second molar 25-33 10-12

- Lower jaw: Erupt (in months) Shed (in years)
 - A) Central incisor 6-10 6-7
 - B) Lateral incisor 9-16 7-8
 - C) canine 17-23 9-12
 - D) first molar 14-26 9-11
 - E) second molar 23-31 10-12

Dental Development

At the time of birth most children will have all their 20 primary teeth already present but the first primary or baby tooth usually erupts from 4 months of age. The timing and order of eruption of the teeth is primarily genetically determined and can vary among children with girls usually ahead of boys in dental eruption. Most children will have all their 20 primary teeth by the age of three.

Primary teeth are generally whiter and smaller than permanent teeth. It is very important to have healthy primary teeth not only for aesthetic reasons, but also because this is a good predictor of a healthy adult dentition.

Furthermore maintenance of intact primary teeth preserves space in the dental arch, supports good speech development and promotes overall quality of life. Wide variation in timing of eruption exists for the primary dentition. The first teeth can start to appear any time from 4 months onwards but some infants are very delayed. In general there is little to worry about if the primary teeth do not come through over the first 12 – 18 months. There are a few rare conditions (syndromes) that may be associated with missing teeth but most children will develop their teeth at some point. If more concern is when the teeth erupt in a spurious fashion, the order of eruption being more important than the actual timing. Should there be a concern regarding the timing or pattern of eruption of the primary dentition then a referral to a specialist paediatric dentist would be appropriate. Such a specialist will decide on the need for further investigations.