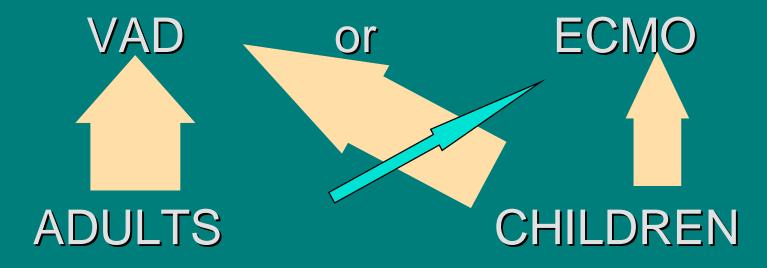

THE USE of VENTRICULAR ASSIST DEVICES in CHILDREN: CURRENT OPTIONS & FUTURE TRENDS

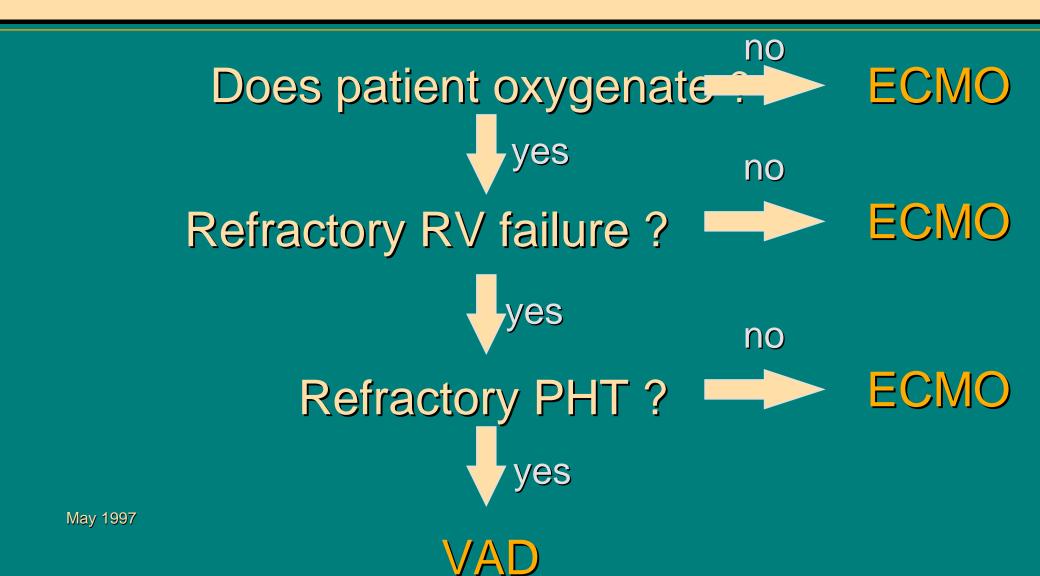
- ADULTS : VAD Better Accepted
 - Technically easier
 - -Fewer anatomical constraints
 - HTx is realistic possibility
 - Overall experience


- Farrar, Hill, Pennington et al.
 - J. Thorac.. Cardiovasc. Surg. 1997, 113(1), p
 202
 - Cohort of 213 pts. in 35 centres
 - LVAD / RVAD / BiVAD or combo
 - 58% 75% survival (all HTx)
 - Survival after HTx > 81%

- CHILDREN : VAD Less Well Accepted
 - -? Technically difficult
 - -? Some anatomy unsuitable
 - Less experience
 - HTx less likely
 - Defined contraindications
 - ECMO for pulmonary dysfunction widely accepted

....if Nil Contraindications....

Then Paediatric VAD SHOULD be Successful - and MIGHT be Better Than ECMO



VAD IS:

- Simpler
- Associated with less bleeding
- Associated with fewer patient complications
- Associated with fewer circuit complications
- Less expensive
- More children are weaned (but no more survive)

- Indications for VAD
 - Unweanable from CPB
 - Weanable / weaned, but low cardiac output
 - Low cardiac output, not related to surgery
 - » i.e.. recovery expected
 - Bridge to transplant
 - » i.e.. recovery not expected

- VAD or ECMO that IS the question.....
 - either in OR or ICU
 - , adequate oxygenation
 - , no RV failure
 - , no pulmonary hypertension
 - Three $_{\bullet}$ = VAD
 - -One X = ECMO

RCH VAD 1989-1997

Procedure Patients

_	Norwood operation		10
_	Valve repair / replacement	nt	9
_	Arterial switch operation	7	
_	ALCAPA repair	5	
_	Konno	3	
_	Aortic root replacement	3	
_	Supravalvar AS repair	2	
_	HTx / HLTx	2	
_	Bidirectional CP shunt	2	
_	Miscellaneous	5	

May 1997

SOTO et.al. 1997

RCH VAD 1989-1997

- Univentricular vs biventricular repair p = 0.29
- Definitive vs palliative repair
 p = 0.29
- Age < 1 year p = 0.13
- Weight < 6 Kg p = 0.35

SOTO et.al. 1997

Berlin Heart

- Paracorporeal, pneumatic
- 10, 25, 30 ml stroke volume
- Trileaflet polyurethane valves

- Centrifugal pumps
 - Biomedicus, Sarns-Delphin, SJM-Lifstream
 - Non-occlusive
 - » Preload and afterload dependant

Medos / HIA

- Paracorporeal, pneumatic
- 9, 10, 22.5, 25 ml stroke volumes
- 12 & 16 mm trileaflet polyurethane valves
- Touch-screen drive unit
- Transparent
- Seamless joints
- CAD optimized washout

Location Device	Autho	r	Year I	No. Pt's	No. W	eaned	No. Disch.
Texas	Scheinin	1994	9	77	55	CP;	HP
Berlin	Hausdorf	1994	8	100	75	ВН	
Sydney	Costa		1995	13	76	53	CP; RP
Berlin	Ishino	1995	14	71	43	ВН	
Pittsburgh	Ashton	1995	9	89	44	CP;	ABIO
Tokyo	Takano	1996	8	38	0	TOY	OBO
Melb'rne	Soto	1997	48	71	46	CP	
Bergamo	Glauber	1997	15	100	80	CP	
Boston	Del Nido	1997	22	N/A	50	CP	

RCH VAD experience: 1989-1997

- 48 patients (49 procedures)
- Median age: 3.5 months (2 days 19 years)
- Median weight 4.7 kg (1.9 70 kg)
- 71% weaned

- Kormos advocates
 - Better selection & appropriate timing

NOW FUTURE

ICU Discharge

Organ recovery Full recovery

Large device Portable / implantable

Non ambulatory School / work

Short term Months / years

HTx ASAP HTx when optimal

- Biomedicus
 - use of a Cray super computer for Computational Fluid Dynamics analysis
 - -? decrease haemolysis by 25%
 - other information confidential

- Biomedicus Heinrich Heine University
 - design of servoregulation system for inlet
 - Aim: increase safetylimit effects of NVP

- Abiomed
 - Research into paediatric version
 - 60 ml prime; 500 1500 ml/min. flow
 - Adjustable stroke volume 5 15 ml
 - Status: animal experiments
 - Issues: anticoagulation; haematology; pulsatility

- Jarvik
 - Axial flow
 - $-1 \times 4 \text{ cm}$; <70 gm
 - Flows to 3 lpm @ 10,000rpm
 - Bearing design blood washed
 - ? transcutaneous energy supply
 - LV apex Descending aorta
 - Status: Animal testing
 - Issues: power supply; thrombus

- Pierce-Donachy
 - Aiming for <5 kg patients
 - Paracorporeal, pneumatic
 - ? need to alter 10mm bileaflet valves to lessen blood trauma
 - Improved flow patterns to facilitate
 - » better washing
 - » less thrombus

- Mussivand Univ. of Ottowa
 - Transcutaneous energy transference
 - Remotely programmable
 - Totally implantable
 - Status: prototype in animals paediatric size to come

The Future......

- Adults
 - Univ Utah centrifugal pump
 - Vienna Univ. sealless CP; ? implantable
 - Nimbus AxiPump
 - Medtronic Hemopump new smaller size (<14FR)
 - Baylor Compact CP uses ceramics & UHMW polyethelyne

DeBakey / NASA axial flow pump

- Adults (con't)
 - Univ. Pittsburgh Artificial Heart Programme
 - Tiny Axial Flow pump in development