THE USE of VENTRICULAR ASSIST DEVICES in CHILDREN: CURRENT OPTIONS & FUTURE TRENDS
• **ADULTS : VAD Better Accepted**

 – Technically easier
 – Fewer anatomical constraints
 – HTx is realistic possibility
 – Overall experience
Farrar, Hill, Pennington et al.
 - Cohort of 213 pts. in 35 centres
 - LVAD / RVAD / BiVAD or combo
 - 58% - 75% survival (all HTx)
 - Survival after HTx > 81%

May 1997
Ventricular Assist Devices in Children

• CHILDREN : VAD Less Well Accepted
 – ? Technically difficult
 – ? Some anatomy unsuitable
 – Less experience
 – HTx less likely
 – Defined contraindications
 – ECMO for pulmonary dysfunction widely accepted
Ventricular Assist Devices in Children

May 1997
Ventricular Assist Devices in Children

....if Nil Contraindications....

Then Paediatric VAD SHOULD be Successful - and MIGHT be Better Than ECMO

VAD or ECMO

ADULTS or CHILDREN

May 1997
Ventricular Assist Devices in Children

- VAD IS:
 - Simpler
 - Associated with less bleeding
 - Associated with fewer patient complications
 - Associated with fewer circuit complications
 - Less expensive
 - More children are weaned
 (but no more survive)

May 1997
Ventricular Assist Devices in Children

• **Indications for VAD**
 – Unweanable from CPB
 – Weanable / weaned, but low cardiac output
 – Low cardiac output, not related to surgery
 » i.e.. recovery expected
 – Bridge to transplant
 » i.e.. recovery not expected

May 1997
Ventricular Assist Devices in Children

• VAD or ECMO - that IS the question.....
 – either in OR or ICU
 • adequate oxygenation
 • no RV failure
 • no pulmonary hypertension
 – Three , = VAD
 – One X = ECMO
Does patient oxygenate?

- yes → Refractory RV failure?
 - yes → Refractory PHT?
 - yes → VAD
 - no → ECMO
 - no → ECMO
- no → ECMO

ECMO
Ventricular Assist Devices in Children

RCH VAD 1989-1997

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norwood operation</td>
<td>10</td>
</tr>
<tr>
<td>Valve repair / replacement</td>
<td>9</td>
</tr>
<tr>
<td>Arterial switch operation</td>
<td>7</td>
</tr>
<tr>
<td>ALCAPA repair</td>
<td>5</td>
</tr>
<tr>
<td>Konno</td>
<td>3</td>
</tr>
<tr>
<td>Aortic root replacement</td>
<td>3</td>
</tr>
<tr>
<td>Supravalvar AS repair</td>
<td>2</td>
</tr>
<tr>
<td>HTx / HLTx</td>
<td>2</td>
</tr>
<tr>
<td>Bidirectional CP shunt</td>
<td>2</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>5</td>
</tr>
</tbody>
</table>

May 1997

SOTO et.al. 1997
Ventricular Assist Devices in Children

RCH VAD 1989-1997

- Univentricular vs biventricular repair $p = 0.29$
- Definitive vs palliative repair $p = 0.29$
- Age < 1 year $p = 0.13$
- Weight < 6 Kg $p = 0.35$

SOTO et.al. 1997
Ventricular Assist Devices in Children

- Berlin Heart
 - Paracorporeal, pneumatic
 - 10, 25, 30 ml stroke volume
 - Trileaflet polyurethane valves
Ventricular Assist Devices in Children

- Centrifugal pumps
 - Biomedicus, Sarns-Delphin, SJM-Lifstream
 - Non-occlusive
 » Preload and afterload dependant

May 1997
Ventricular Assist Devices in Children

- **Medos / HIA**
 - Paracorporeal, pneumatic
 - 9, 10, 22.5, 25 ml stroke volumes
 - 12 & 16 mm trileaflet polyurethane valves
 - Touch-screen drive unit
 - Transparent
 - Seamless joints
 - CAD optimized washout
<table>
<thead>
<tr>
<th>Location</th>
<th>Device</th>
<th>Author</th>
<th>Year</th>
<th>No. Pt’s</th>
<th>No. Weaned</th>
<th>No. Disch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas</td>
<td>Device</td>
<td>Scheinin</td>
<td>1994</td>
<td>9</td>
<td>77</td>
<td>55</td>
</tr>
<tr>
<td>Berlin</td>
<td>Device</td>
<td>Hausdorf</td>
<td>1994</td>
<td>8</td>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td>Sydney</td>
<td>Device</td>
<td>Costa</td>
<td>1995</td>
<td>13</td>
<td>76</td>
<td>53</td>
</tr>
<tr>
<td>Berlin</td>
<td>Device</td>
<td>Ishino</td>
<td>1995</td>
<td>14</td>
<td>71</td>
<td>43</td>
</tr>
<tr>
<td>Pittsburgh</td>
<td>Device</td>
<td>Ashton</td>
<td>1995</td>
<td>9</td>
<td>89</td>
<td>44</td>
</tr>
<tr>
<td>Tokyo</td>
<td>Device</td>
<td>Takano</td>
<td>1996</td>
<td>8</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>Melb’rne</td>
<td>Device</td>
<td>Soto</td>
<td>1997</td>
<td>48</td>
<td>71</td>
<td>46</td>
</tr>
<tr>
<td>Bergamo</td>
<td>Device</td>
<td>Glauber</td>
<td>1997</td>
<td>15</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>Boston</td>
<td>Device</td>
<td>Del Nido</td>
<td>1997</td>
<td>22</td>
<td>N/A</td>
<td>50</td>
</tr>
</tbody>
</table>

May 1997
Ventricular Assist Devices in Children

RCH VAD experience: 1989-1997

- 48 patients (49 procedures)
- Median age: 3.5 months (2 days - 19 years)
- Median weight 4.7 kg (1.9 - 70 kg)
- 71% weaned

SOTO et al. 1997
Ventricular Assist Devices in Children

• **Kormos advocates**
 – Better selection & appropriate timing

<table>
<thead>
<tr>
<th>NOW</th>
<th>FUTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICU</td>
<td>Discharge</td>
</tr>
<tr>
<td>Organ recovery</td>
<td>Full recovery</td>
</tr>
<tr>
<td>Large device</td>
<td>Portable / implantable</td>
</tr>
<tr>
<td>Non ambulatory</td>
<td>School / work</td>
</tr>
<tr>
<td>Short term</td>
<td>Months / years</td>
</tr>
<tr>
<td>HTx ASAP</td>
<td>HTx when optimal</td>
</tr>
</tbody>
</table>

May 1997
Ventricular Assist Devices in Children

The Future.......

- Biomedicus
 - use of a Cray super computer for Computational Fluid Dynamics analysis
 - ? decrease haemolysis by 25%
 - other information confidential

May 1997
The Future

- Biomedicus - Heinrich Heine University
 - design of servoregulation system for inlet
 - Aim: increase safety
 limit effects of NVP
The Future

- Abiomed
 - Research into paediatric version
 - 60 ml prime; 500 - 1500 ml/min. flow
 - Adjustable stroke volume 5 - 15 ml
 - Status: animal experiments
 - Issues: anticoagulation; haematology; pulsatility

May 1997
The Future

- **Jarvik**
 - Axial flow
 - 1 x 4 cm; <70 gm
 - Flows to 3 lpm @ 10,000rpm
 - Bearing design - blood washed
 - ? transcutaneous energy supply
 - LV apex - Descending aorta
 - Status: Animal testing
 - Issues: power supply; thrombus

Ventricular Assist Devices in Children

May 1997
Ventricular Assist Devices in Children

The Future......

- Pierce-Donachy
 - Aiming for <5 kg patients
 - Paracorporeal, pneumatic
 - ? need to alter 10mm bileaflet valves to lessen blood trauma
 - Improved flow patterns to facilitate
 » better washing
 » less thrombus

May 1997
The Future

- Mussivand - Univ. of Ottawa
- Transcutaneous energy transference
- Remotely programmable
- Totally implantable
- Status: prototype in animals
 paediatric size to come

May 1997
Ventricular Assist Devices in Children

The Future.......

• Adults
 – Univ Utah centrifugal pump
 – Vienna Univ. sealless CP; ? implantable
 – Nimbus AxiPump
 – Medtronic Hemopump - new smaller size (<14FR)
 – Baylor Compact CP - uses ceramics & UHMW polyethelyne
 – DeBakey / NASA axial flow pump

May 1997
Ventricular Assist Devices in Children

The Future......

• Adults (con’t)
 – Univ. Pittsburgh Artificial Heart Programme
 » Tiny Axial Flow pump in development