Coeliac disease

Antonio Di Sabatino, Gino Roberto Corazza

Coeliac disease is a chronic inflammatory disorder of the small bowel induced in genetically susceptible people by the irritant gluten and possibly other environmental cofactors. The disorder is characterised by a diverse clinical heterogeneity that ranges from asymptomatic to severely symptomatic, and it manifests with frank malabsorption, an increased morbidity attributable to the frequent association with autoimmune disorders and increased mortality resulting from the emergence of T-cell clonal proliferations that predispose the patient to enteropathy-type T-cell lymphoma. Our understanding of the molecular basis for this disorder has improved and enabled the identification of targets for new therapies, although a strict gluten-free diet remains the mainstay of safe and effective treatment. In this Seminar we critically reassess the clinical and diagnostic aspects of this disease and new perspectives in its pathogenesis and treatment.

Introduction

Coeliac disease is a chronic inflammatory disease characterised by flattened villi on the small bowel mucosa, and is induced in genetically susceptible people by the ingestion of proline-rich and glutamine-rich proteins in wheat, rye, and barley. Researchers postulate that the condition first developed after the last ice age in the fertile crescent of the Middle East with the cultivation of grains, and the first description dates from the 1st and 2nd centuries CE.\(^1\) Coeliac disease has a diverse clinical heterogeneity, and increases both morbidity and mortality. However, knowledge of many aspects of this disorder is inadequate—even in the academic specialty setting.\(^2\)

Epidemiology

The accuracy of estimates of the true prevalence of coeliac disease has been substantially improved by the increased reliability of serological tests—namely for IgA antigliadin antibodies, initially, then for antiendomysial antibodies and IgA antihuman tissue transglutaminase (hTTG) antibodies. In large population samples, these tests enable screening for people who need a biopsy to confirm intestinal coeliac lesions. By means of this approach, the prevalence of biopsy-proven coeliac disease in Finnish and Italian schoolchildren was reported to be 1:99 and 1:106, respectively.\(^3,4\) Similar rates of seroprevalence have been reported in adult populations in the UK (1:87)\(^5\) and USA (1:105),\(^6\) thus drawing attention to the very high frequency of the disease in white people. The disorder is less common in Hispanic Americans\(^7\) and is thought to be rare in central Africa and east Asia. The highest rate of antiendomysial antibody positivity (5·6%) has been reported in Saharawi children.\(^8\)

Causation

Coeliac disease develops as a consequence of the encounter between an environmental trigger and a genetically predisposed host, with the possible participation of other environmental cofactors (figure 1).

Triggers

Gluten is a rubbery mass that consists of storage proteins that remain after starch is washed from wheat-flour dough. These proteins have different solubilities in alcohol–water solutions and, thus, can be roughly separated into two fractions—gliadins and glutenins. Gluten proteins have a complex chemistry and are responsible for the baking properties of wheat—water absorption capacity, cohesivity, viscosity, and dough elasticity.\(^9\) Analysis of gliadin has identified more than a hundred components that can be grouped into four main types (ω5-, ω1,2-, α/β-, γ-gliadins). The immunogenicity and toxicity of several gliadin epitopes...
has been established.

A distinction exists between a peptide being immunogenic or toxic. Lymphocyte-based systems are used to assess immunostimulatory properties and, so far, all peptides that are immunostimulatory in vitro are toxic when tested in vivo. However, ex-vivo or in-vivo experiments are needed to confirm toxicity. Investigators have, however, identified a peptide that is toxic both in people and to coeliac small-intestinal explants that does not stimulate coeliac gluten-sensitive small-intestinal T cells in vitro. Thus, an absence of in-vitro stimulatory capacity of a peptide does not exclude it from causing toxic effects in patients.

Glutenin can be divided into groups of high molecular weight and low molecular weight. Immunogenicity and toxicity in the high-weight group have been shown. Storage proteins (prolamines), with a similar aminoacid composition to the gliadin fractions of wheat, have been identified in barley (hordeins) and rye (secalines), and show a close relation to the taxonomy and toxic properties of wheat cereal that affect people with coeliac disease.

Although several gluten epitopes are immunostimulatory, some are more active than others. An immunodominant peptide of 33 aminoacids (residues 57–89) identified from an α-gliadin fraction has functional properties attributable to many proline and glutamine residues. Proline gives the peptide increased resistance to gastrointestinal proteolysis (in people with and without coeliac disease), and causes a left-handed helical conformation, which strengthens binding with HLA-DQ2 and HLA-DQ8 molecules on antigen-presenting cells. Additionally, glutenin residues are a preferred substrate for tissue-transglutaminase-mediated deamidation, which confers an enhanced immunogenicity.

Genes

Genetic factors are a likely cause of coeliac disease on the basis of familial aggregation and a concordance rate of about 85% between monozygotic twins. Results from genetic linkage studies show that the disease is strongly associated with HLA-DQ genes. Most patients carry a variant of DQ2 (alleles DQA1*05/DQB1*02) and others carry a variant of DQ8 (alleles DQA1*03/DQB1*0302). Rare DQ2-/DQ8- patients carry alleles that code for one chain of the DQ2-encoded heterodimer (DQA1*05 or DQB1*02). The association between HLA genes (COELIAC1 locus on chromosome 6p21) and coeliac disease is very strong compared with other HLA-linked diseases; however, researchers estimate that the genetic effect attributable to HLA is 53%. Moreover, DQ2 is carried by roughly a third of the general population, thus suggesting that HLA is only partly the cause of the condition. The concordance rate between HLA-identical siblings is much lower than between monozygotic twins; thus, other non-HLA regions must be involved.

Furthermore, researchers report that additional susceptibility might be conferred by COELIAC2 (5q31–33), which contains cytokine gene clusters; COELIAC3 (2q33) that encodes the negative costimulatory molecule CTLA4; and COELIAC4 (19p13.1), which contains the myosin IXB gene variant encoding an unconventional myosin that alters epithelial actin remodelling. Results of two genome-wide association studies have shown risk variants in the region harbouring interleukin 2 and interleukin 21 (4q27)—which are both implicated in intestinal inflammation—and six other genetic risk variants controlling immune responses (figure 1). Fine mapping and deep resequencing of these regions is needed to establish their causal relation to coeliac disease.

Environmental cofactors

Some drugs can have a role in enhancing a person’s susceptibility to gluten—Cammarota and colleagues concluded that a course of interferon alfa could activate coeliac disease in predisposed people. Intestinal infections might cause a transient rise in small-bowel permeability and could lead to up-regulation and release of tissue transglutaminase that, in turn, enhances gluten immunogenicity. Rod-shaped bacteria have been identified in the intestinal epithelium in children with coeliac disease, although this colonisation could just be coincidental. Results of a longitudinal study show that a high frequency of rotavirus infections could raise the risk of coeliac disease in genetically predisposed children. The homology between the rotavirus-neutralising protein VP-7 and tissue transglutaminase might explain how rotavirus infection is implicated in the development of coeliac disease.

Changes in infant-feeding practices might affect the rise and fall of the disease in Sweden. Results of a case–control study showed that the introduction of dietary gluten while infants were still being breastfed, and the introduction of small or medium amounts rather than large amounts, are independent protective factors against the disease in early and perhaps later childhood, whereas the timing of gluten introduction alone was irrelevant. However, these results were not confirmed by a subsequent prospective study. Large follow-up studies are, therefore, needed to clarify how dietary cofactors affect the development of this condition before a child’s immunity is established and to identify primary prevention strategies.

Pathophysiology

Study of the pathogenesis of coeliac disease has focused on the mechanisms by which gluten peptides, after crossing the epithelium into the lamina propria, are deamidated by tissue transglutaminase and then presented by DQ2+ or DQ8+ antigen-presenting cells to pathogenic CD4+ T cells. Once activated, the CD4+ T cells drive a T-helper-cell type 1 response that leads to the development of coeliac lesions—namely intraepithelial and lamina propria infiltration of inflammatory cells, crypt hyperplasia, and villous atrophy (figure 2).
Epithelial translocation of gluten peptides

In the intestinal lumen, gastrointestinal proteases are a first defence against potentially toxic dietary proteins, including the incompletely digested gluten proteins. Gut permeability is enhanced in coeliac disease and gluten can reach the lamina propria through different routes (figure 2). Investigators have postulated that there is a paracellular route on the basis of amplified expression of zonulin—a protein implicated in the opening of tight junctions—and T-helper-1-induced changes in the expression, localisation, or phosphorylation of epithelial junctional proteins in active disease. Additionally, Wapenaar and co-workers identified variants in genes coding for tight junctional proteins, suggesting that heritable factors might contribute to this effect. However, the paracellular passage of gluten is not proven, whereas study results have shown that the immunodominant α2-gliadin-33mer translocates into the lamina propria via an interferon-γ-dependent transcytosis, which suggests involvement of the transcellular route. Furthermore, the protected transport pathway, which is driven by retrotranscytosis of secretory IgA through transferrin receptor CD71, promotes the influx of intact, and thus harmful, gluten peptides.

Figure 2: Mechanisms of mucosal damage in coeliac disease

Gluten peptides can be transported across the intestinal epithelium either paracellularly (blue route) as a consequence of impaired mucosal integrity attributable to increased release of zonulin, or via transcytosis (green route), or retrotranscytosis of secretory IgA (sIgA) (red route) through transferrin receptor CD71. Deamidation or crosslinking of gluten by tissue transglutaminase (tTG) (beige panel) reinforces presentation of gluten peptides by dendritic cells to CD4+ T cells in the context of HLA-DQ2 or HLA-DQ8 molecules. Activated gluten-reactive CD4+ T-cells produce high levels of pro-inflammatory cytokines, thus inducing a T-helper-cell-type-(Th)1 pattern dominated by interferon gamma (IFN-γ). Th-1 cytokines promote inflammatory effects including fibroblast or lamina propria mononuclear cell (LPMC) secretion of matrix metalloproteinases (MMPs), which are responsible for degradation of extracellular matrix and basement membrane, and increased cytotoxicity of intraepithelial lymphocytes (IELs) or natural killer (NK) T cells. These latter facilitate the apoptotic death of enterocytes by the Fas/Fas ligand (FasL) system, or interleukin 15 (IL-15)-induced perforin-granzyme and NKG2D–MIC signalling pathways, thus leading to enterocyte apoptosis. Interferon alfa (IFN-α) released by activated dendritic cells perpetuates the inflammatory reaction by inducing CD4+ T cells to produce IFN-γ. Additionally, through the production of Th-2 cytokines, activated CD4+ T-cells drive the activation and clonal expansion of B cells, which differentiate into plasma cells and produce antigliadin and anti-tTG antibodies. By interacting with the extracellular membrane-bound tTG (mtTG), tTG-autoantibody deposits in the basement-membrane region might induce enterocyte cytoskeleton changes with actin redistribution and consequent epithelial damage.
Modification and presentation of gluten peptides

Tissue transglutaminase, a calcium-dependent, ubiquitous enzyme that catalyses post-translational modification of proteins and is released during inflammation, could have at least two crucial roles in coeliac disease: as the main target autoantigen for antiendomysial antibodies and hTTG antibodies, and as a deamidating enzyme that raises the immunostimulatory effect of gluten. Expression and activity of tissue transglutaminase are raised in the mucosa of patients with coeliac disease, where, by deamidating glutamine to glutamic acid, this enzyme makes gliadin peptides negatively charged and therefore more capable of fitting into pockets of the DQ2/DQ8 antigen-binding groove. Additional functions of the enzyme in coeliac disease consist of cross-linking gluten peptides, thus forming supramolecular complexes, and catalysing either the binding of gluten peptides to interstitial collagen or the incorporation of histamine into gluten proteins (transamidation). All of these actions contribute to the formation of a wide range of T-cell-stimulatory epitopes that might be implicated in different stages of the disease. The α2-gliadin-33mer fragment is the most immunogenic because it harbours six partly overlapping DQ2-restricted epitopes.

Effector mechanisms

In the mucosa of patients with active coeliac disease, gluten-reactive CD4+ T cells produce several proinflammatory cytokines, interferon γ being dominant, which trigger various effector mechanisms including raised secretion of tissue-damaging matrix metalloproteinases and heightened cytotoxicity of intraepithelial lymphocytes against enterocytes with increased enterocyte apoptosis and villous flattening (figure 2). Several aspects of the molecular mechanisms that drive the immune response in coeliac disease are unknown. Some proinflammatory cytokines are upregulated in active coeliac mucosa—namely interferon γ, interferon α, interleukin 6, interleukin 18, and interleukin 21—but paradoxically, tumour necrosis factor α, the most powerful promoter of inflammation, and interleukin 12, the main cytokine that primes T cells for interferon γ production, are not raised. Di Sabatino and colleagues showed the pathogenic function of interferon-α-producing plasmacytoid dendritic cells, which draws attention to the crucial role of interferon α in promoting the differentiation of type 1 T-helper-cells and production of interferon γ.

T-cell-mediated immunity alone does not account for the expansion of cytotoxic CD8+ intraepithelial lymphocytes. Interleukin 15 is implicated in activating perforin–granzyme-dependent cytotoxicity by coeliac intraepithelial lymphocytes, and in promoting their expression of the natural-killer receptors CD94 and NKG2D, thus contributing to enhanced enterocyte apoptosis. Furthermore, interleukin 15 might have a crucial role in the emergence of T-cell clonal proliferations because of its antiapoptotic action on the intraepithelial lymphocytes, therefore predisposing patients to the malignant complications of coeliac disease.

Some gluten peptides can directly induce mucosal damage via a non-T-cell-dependent pathway (innate response). The best characterised peptide is the non-immunodominant p31-43/49 fragment of α-gliadin that is thought to be unable to stimulate gluten-reactive CD4+ T cells. In coeliac mucosa, p31-43/49 induces interleukin 15 production, which in turn inhibits the immune-regulatory signalling of transforming growth factor β, promotes dendritic cell maturation, and causes epithelial stress.

Autoantibodies against tissue transglutaminase might contribute to mucosal damage by preventing the generation of the active form of transforming growth factor β or through inducing enterocyte cytoskeleton changes with actin redistribution via their interaction with the extracellular-membrane-bound tissue transglutaminase, or by stabilising tissue transglutaminase in a catalytically advantageous conformation. Conversely, because the enzyme autoantibodies might inhibit the activity of tissue transglutaminase, they could block their pathogenic role. However, inhibition is far from complete, and the residual enzyme activity could be sufficient to exert its pathogenic role.

Some aspects of coeliac disease pathogenesis are unknown, including the relation between the events in

Panel 1: Range of clinical presentations in coeliac disease

Silent coeliac disease

- Patients who do not complain of any symptoms and do not seek medical advice
- Most of these patients are relatives of patients with known coeliac disease or members of the general population found to be positive at the search for antiendomysial antibodies or hTTG antibodies

Minor coeliac disease

- Patients complaining of trivial, transient, or apparently unrelated symptoms (dyspepsia, abdominal discomfort and bloating, mild or occasional altered bowels habit without malabsorption mimicking irritable bowel syndrome, unexplained anaemia, isolated fatigue, cryptic hypertransaminasaemia, infertility, peripheral and central neurologic disorders, osteoporosis, short stature, dental enamel defects, dermatitis herpetiformis), or of isolated symptoms of autoimmune diseases often reported in association with coeliac disease
- Most of these patients are biopsied after positive search of antiendomysial antibodies or hTTG antibodies

Major coeliac disease

- Patients complaining of frank malabsorption symptoms (diarrhoea which is often nocturnal and with incontinence, steatorrhoea suggested by loose discoloured, greasy, and frothy stools that are difficult to flush away, weight loss and other features of malnutrition, cramps, tetany, and peripheral oedema due to electrolyte and albumin depletion), symptoms of other autoimmune diseases may be associated
- Most of these patients are biopsied only on the basis of symptoms
the epithelium, the contribution of innate or adaptive immunity, the role of regulatory T cells, and the possible function of gliadin peptides as ligands for mammalian-pattern-recognition receptors.

Clinical aspects

Mode of presentation

Until 30 years ago, the use of intestinal biopsy was reserved for patients with symptoms of overt malabsorption and, consequently, the prevalence of malabsorption among patients with coeliac disease was very high. At the beginning of the 1980s, awareness of the disease improved and a lowered threshold for its investigation led us to acknowledge the more subtle and variable clinical expression of the condition. At the end of the 1980s—after the advent of serology—the number of patients with minor symptoms was twice the number of people with overt malabsorption, and this observation was accompanied by a significant rise in the rate of diagnosis, a progressive lowering of patients’ age at diagnosis, and a reduction of the female to male ratio. The initial trend was seen in Italy and similar trends were confirmed in the USA. The disease is two or three times more common in women than in men, but this predominance falls after the age of 65 years.

The clinical range of coeliac disease is very wide—patients can be asymptomatic to severely symptomatic. To categorise the possible forms of clinical presentations, terms such as atypical, typical, and classic should be discouraged, whereas the terms silent, minor, and major can characterise clinical presentation simply and clearly (panel 1). Use of the term silent has, however, been criticised because a thorough history, examination, or laboratory investigation might reveal very subtle abnormal changes; although many patients with silent disease are symptom-free.

Autoimmune and immune-mediated diseases often reported in association with coeliac disease are type 1 diabetes, autoimmune thyroiditis, autoimmune myocarditis, idiopathic dilated cardiomyopathy, Sjögren’s syndrome, systemic lupus erythematosus, autoimmune hepatitis, autoimmune cholangitis, primary biliary cirrhosis, IgA deficiency, Addison’s disease, IgA mesangial nephropathy, alopecia areata, neurological abnormalities, atopy, inflammatory bowel disease, systemic and cutaneous vasculitis, psoriasis, juvenile idiopathic arthritis, and polymyositis.

The mechanisms that cause the severity of clinical presentation remain unknown. Researchers have showed that neither the degree of duodenal villous atrophy nor the extent of visible enteropathy assessed by capsule endoscopy correlates with presentation. These results should be corroborated by accurate tests such as morphometry to quantify mucosal damage and multiple biopsy collection and analysis to assess the length of small intestine affected.

Comorbidity

Some patients with coeliac disease are affected by a loss of bone mass grossly proportional to the degree of malabsorption. In children, osteoporosis can be reversed by a gluten-free diet with restoration of normal peak densitometric values; however, in adults, bone-mineral density improves but rarely normalises. Accordingly, a higher risk of fractures has been reported in adults with coeliac disease.

Screening bone-mineral density at diagnosis seems not to be justified in view of a study showing a very low prevalence of osteoporosis in an unselected cohort of untreated patients with coeliac disease attending a district general hospital. Densitometry might be restricted to patients with major coeliac disease and particularly to those with previous pathological fractures, untreated hypogonadism, concomitant lactose intolerance, poor compliance with or unresponsiveness to a gluten-free diet, or those on steroids. Most bone-mineral density improvement occurs after one or two years of gluten withdrawal; thus, the optimal time of measurement might be at this time when densitometry is indicated to evaluate the need to supplement the gluten-free diet with mineral active drugs.

Autoimmune disorders occur much more frequently in patients with coeliac disease than in the general population. The prevalence of associated autoimmunity was shown to increase substantially with increasing age at diagnosis—which is taken as an index of the duration of exposure to gluten—in a cohort of coeliac children and adolescents. However, these results were not confirmed in adult patients when mean duration of actual gluten exposure was considered rather than age at diagnosis. Protection against autoimmune associations has been held as one of the strongest arguments in favour of a prompt diagnosis and treatment, this issue should be carefully reconsidered.

The clinical relevance of autoimmunity in coeliac disease is threefold: first, it further deteriorates the clinical course of coeliac disease; second, patients might present only with symptoms of secondary autoimmunity and this could favour the diagnosis of minor coeliac disease; and third, gluten withdrawal could improve the control of some associated autoimmune disorders.

Mild liver abnormalities are common in coeliac disease. Isolated hypertransaminasaemia, without specific histological changes and promptly reversible with a gluten-free diet, is the most common form of hepatic involvement. Other possible forms include autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis, and non-alcoholic fatty liver disease.

A wide range of neurological and psychiatric disorders such as ataxia, peripheral neuropathy, epilepsy (mainly with occipital calcifications), headache, dementia, depression, autism, and schizophrenia has been reported in association with coeliac disease. However, pathology studies and diet trials have not confirmed the existence of
a link between autism and schizophrenia and coeliac disease. Furthermore, women with coeliac disease more frequently experience recurrent spontaneous miscarriage, delayed menarche, early menopause, and amenorrhoea. Fertility problems and loss of libido can also be present in male patients.83

Natural course

Our understanding of the natural course of coeliac disease is very limited. At diagnosis, we have difficulty dating the development of intestinal lesions and symptoms (if any) and predicting what the spontaneous course of the disease would be without a gluten-free diet. We do know gluten might not be toxic from the first contact. Children and adults with normal results on intestinal biopsy while taking a gluten-containing diet can subsequently develop villous atrophy that recovers after commencing a gluten-free diet.84 The recognition of a precoeliac state is usually retrospective and this condition has been termed latent coeliac disease.85 Patients with positive coeliac-related antibodies but with normal mucosa are regarded as having potential coeliac disease,86 although there is no evidence to support managing these patients with a gluten-free diet or careful follow-up until unequivocal mucosal flattening is recorded.

Mortimer and colleagues reported that adult patients with coeliac disease, diagnosed in childhood and then lost to follow-up, had mild to moderate clinical complaints and persistence of flat mucosa after many years of gluten exposure.87 Matysiak-Budnik and co-workers,88 who undertook a similar study in patients who resumed a gluten-containing diet, reported most patients had some villous atrophy. However, in 20% of patients duodenal biopsy remained normal, indicating an evolution towards latency that might be only transient, as suggested by a subsequent histological relapse in two patients and by the high frequency of coeliac antibodies in this subgroup. These results, therefore, do not disprove that coeliac disease is a permanent condition.

Diagnosis

Case finding

The burden of undetected disease is very high: a cautious prevalence estimate of 0·5% equates to around 2·5 million patients still undiagnosed in Europe, and researchers have calculated that the ratio between diagnosed and undiagnosed patients is as high as 1:7.89 Increased physician awareness of the clinical range of this disorder and a continued high threshold of suspicion are, therefore, needed. Researchers have shown that case-finding by measurement of antiendomysial antibodies or hTTG antibodies followed by histological confirmation on duodenal biopsy is an accurate, cost-effective, and acceptable approach for diagnosis—even in primary care.90 Additionally, patients with conditions that are frequently associated with coeliac disease should be considered for screening (panel 2).91 This case-finding strategy is preferred to mass screening of the general population.

Panel 2: Risk groups for coeliac disease case-finding

- First-degree relatives
- Dermatitis herpetiformis
- Unexplained iron deficiency anaemia
- Autoimmune thyroiditis
- Type 1 diabetes
- Unexplained infertility
- Recurrent abortion
- Dental enamel hypoplasia
- Cryptic hypertransaminasaemia
- Autoimmune liver disease
- Short stature
- Delayed puberty
- Down’s syndrome and Turner syndrome
- Irritable bowel syndrome
- Unexplained osteoporosis
- Sjogren’s syndrome
- Epilepsy with occipital calcifications

A

Figure 3: Grades A, B1, and B2 coeliac disease

Representative pictures of coeliac disease grades. (A) Grade A (infiltrative non-atrophic lesions, haematoxylin and eosin stain [H&E], and CD3 staining). (B) Grade B1 (atrophic with shortened but still detectable villi). (C) Grade B2 (atrophic with no longer detectable villi, H&E staining).95

www.thelancet.com Vol 373 April 25, 2009 1485
population, although coeliac disease meets the criteria for mass screening for at least four reasons: the disease is common, there are simple and sufficiently accurate screening tests, it has an agreed treatment, and it is burdened by the risk of complications. However, effectiveness, acceptability, and the costs of mass screening are unknown and there is no evidence that this alternative strategy would lead to reduced morbidity and mortality.

Histology

The diagnosis of coeliac disease is based on the presence of characteristic lesions in small-intestinal biopsy samples. Four endoscopic biopsies are mandatory for absolute diagnostic confidence, and the specimens should be correctly oriented and sectioned to avoid artifacts that frequently cause misdiagnosis. Biopsy samples are usually taken from the distal duodenum; however, isolated patchy villi atrophy of the duodenal bulb has been reported, so an additional biopsy from this region should also be taken.

The pathology of the disease can range from infiltrative lesions characterised by increased intraepithelial lymphocyte with normal architecture to completely flat mucosa. The Marsh classification, as modified by Oberhuber and colleagues, is used to grade the severity of lesions characterised by increased intraepithelial lymphocytes with normal architecture to completely flat lesions characterised by increased intraepithelial mucosa. The Marsh classification, as modiﬁed by Oberhuber and colleagues,95 is used to grade the severity of lesions characterised by increased intraepithelial lymphocytes with normal architecture to completely flat lesions characterised by increased intraepithelial mucosa. The Marsh classiﬁcation, as modiﬁed by Oberhuber and colleagues,95 is used to grade the severity of lesions characterised by increased intraepithelial lymphocytes with normal architecture to completely flat lesions characterised by increased intraepithelial mucosa. The Marsh-Oberhuber classiﬁcation. Minor lesions, such as increased intraepithelial lymphocytes, are recognised to be important for diagnosis; however, isolated inﬁltrative lesions have a low speciﬁcity for coeliac disease and other causes of inﬁltrative lymphocytosis have been recently reviewed.97 Moreover, villi atrophy is reported in other disorders (panel 3), and diagnosis of coeliac disease is, therefore, conﬁrmed only by clinical symptoms, a positive serology, or histological improvement after commencement of a gluten-free diet. Assessment of clinical improvement in patients with silent or minor coeliac disease is very difﬁcult and these patients could beneﬁt from a second post-treatment biopsy. A repeat biopsy after dietary intervention is not always necessary, but showing of histological improvement supports the diagnosis, checks dietary compliance, and reassures the patient. Furthermore, a second biopsy can be useful for patients with ambiguous histological changes, initial negative or discrepant serology, or continued symptoms.18

Serology

Hill and colleagues99 reviewed studies assessing the accuracy of antibody tests. In 32 studies of antiendomysial antibody IgA, sensitivity ranged from 86% to 100% (mean 95%) and speciﬁcity from 90% to 100% (mean 99%); in 27 studies for tissue transglutaminase IgA, sensitivity ranged from 61% to 100% (mean 87%) and speciﬁcity from 86% to 100% (mean 95%). These studies should, however, be interpreted with caution: all were done in research settings where accuracy is probably higher than in clinical practice, most assessed preselected serum samples and not prospectively enrolled individuals, and the use of guinea-pig enzyme instead of human-recombinant enzyme in some studies might have lowered the speciﬁcity of the tissue transglutaminase results. Researchers of a prospective study that compared antiendomysial IgA with hTTG IgA reported a similar optimum sensitivity but a signiﬁcantly lower speciﬁcity for the hTTG IgA.100 Antiactin antibodies, which correlate with intestinal damage, do not have a role in coeliac disease screening,101 whereas antibodies against deamidated gliadin peptides reinforce the accuracy of and perform better than hTTG antibodies and antiendomysial antibodies in the assessment of dietary compliance and post-treatment mucosal recovery.102 A potential pitfall of serology is the 10–16 fold increase of IgA deﬁciency in the disease. Serum IgA should, therefore, always be checked and, if absent, measurement of antiendomysial IgG and hTTG IgG is recommended.101 Measurement of total IgA and antiendomysial IgA or hTTG IgA—depending on local facilities and laboratory expertise—is a suitable approach to screen for coeliac disease. However, although serology is a good method to select patients for biopsy, negative serology should not preclude biopsy examination in individuals for whom disease is suspected on clinical grounds.

Endoscopy

Two major endoscopic abnormal changes—the disappearance or reduction of Kerckring folds104 and the scalloped configuration of reduced folds (figure 4)105—were identiﬁed together. Conceivably, in these early studies, researchers overestimated the performance of endoscopic markers because of the high pretest probability of coeliac

Panel 3: Other causes of flat mucosa

- Autoimmune enteropathy
- Tropical sprue
- Giardiasis
- HIV enteropathy
- Bacterial overgrowth
- Crohn’s disease
- Eosinophilic gastroenteritis
- Cow’s milk enteropathy
- Soy protein enteropathy
- Primary immunodeﬁciency
- Graft-versus-host disease
- Chemotherapy and radiation damage
- Protein energy malnutrition
disease, and subsequent reports have downsized their sensitivity and specificity. Controversies could be solved by defining the appropriate setting for endoscopy in coeliac disease. Endoscopic markers have no role in diagnosis when disease is suspected on clinical or serological grounds. In these patients, the decision to do biopsies should not depend on endoscopy. However, the recognition of abnormal changes on endoscopy done for other reasons might be crucial for patients in whom coeliac disease is not suspected. Immersion endoscopy has been proposed by Cammarota and colleagues as a cost-sparing and very accurate biopsy-avoiding technique, although it is unable to detect infiltrative lesions and its use is not feasible in a routine endoscopy setting.

HLA typing
The negative predictive value of HLA-DQ2/DQ8 is almost absolute and is useful for ruling out coeliac disease in high-risk individuals such as first-degree relatives and patients with type 1 diabetes. Negative results avoid future concerns about the condition and reduce the cost of further serological tests; the limiting factor is the high frequency of these predisposing genes in many of the risk groups susceptible to case-finding.

Dietary treatment
The only proven treatment for coeliac disease is strict and life-long adherence to a gluten-free diet. All food and drugs that contain gluten from wheat, rye, barley, and their derivatives must be eliminated because even small amounts can be harmful. Gluten contamination in gluten-free products cannot be completely avoided; results of a double-blind placebo–control trial established that 10 mg gluten per day is tolerated whereas 50 mg is harmful. Individual variability between patients, however, makes setting a universal safe threshold difficult.

Apart from the ubiquity of gluten in foodstuffs, another crucial limit of a gluten-free diet is patients’ compliance, which is imperfect—particularly in teenagers, adults, and patients diagnosed in screening programmes. The main factors associated with poor compliance are those that substantially decrease quality of life. Anxiety, constipation and intestinal bloating, changes in body composition and dietary intake, and poor vitamin status are additional minor but well defined side-effects associated with this lifelong treatment.

Although coeliac antibodies usually disappear after commencement of a gluten-free diet, they are not accurate for detecting dietary lapses or mucosal recovery. Antiendomysial antibodies are a more precise measure than are hTTG antibodies, and antibodies against deamidated gliadin might be effective. Dietary compliance assessed by a trained interviewer is considered the best measure of coeliac disease control because it is low cost, non-invasive, and correlates to intestinal damage.

Oats seem to be safe in coeliac disease, even after 5 years of exposure, but their inclusion in a gluten-free diet is restricted by reports of oat-sensitive patients. Avenin-reactive mucosal T cells have been identified in these patients, and avenin peptides have sequences rich in proline and glutamine residues that closely resemble wheat-gluten epitopes. Patients’ education, close supervision with regular nutritional counselling, and maintenance of dietary adherence when travelling or dining out are crucial for achieving compliance. Patients should be encouraged to join a coeliac-disease support group because members are usually more knowledgeable and adherent to their diet than are non-members.

Complications
Results of studies from Italy and Sweden showed a twofold increased mortality in patients with coeliac disease, whereas this risk was only marginally raised in the UK. The risk of death rose with increasing delay in diagnosis and in patients with poor dietary compliance; non-Hodgkin lymphoma was the main cause of death. Patients diagnosed with the condition in childhood have a threefold increased risk of long-term mortality. However, this excess was mostly attributable to external causes as a possible result of behavioural changes.

<table>
<thead>
<tr>
<th></th>
<th>Type 1</th>
<th>Type 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unresponsive villous atrophy</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Associated autoimmune diseases</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Aberrant T-cell phenotype</td>
<td>≤10% of IELs</td>
<td>>50% of IELs</td>
</tr>
<tr>
<td>Clonal TCR-γ gene rearrangement</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Chromosomal abnormalities</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>HLA-DQ2 homozygosity</td>
<td>Uncommon</td>
<td>Common</td>
</tr>
<tr>
<td>Associated ulcerative jejunoileitis</td>
<td>Rare</td>
<td>Common</td>
</tr>
<tr>
<td>Response to immunosuppressants (steroids, budesonide, azathioprine, tacrolimus, infliximab)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Risk of developing overt EATL</td>
<td>Low</td>
<td>37–60% within 5 yrs</td>
</tr>
<tr>
<td>Mortality rate</td>
<td>Slightly increased</td>
<td>5-yr survival <50%</td>
</tr>
</tbody>
</table>

EATL=enteropathy-associated T-cell lymphoma. IEL= intraepithelial lymphocyte. TCR=T-cell receptor.

Table 1: Comparison between refractory coeliac disease type 1 and type 2
associated with this chronic disease and its treatment. No increased risk of cancer or death has been reported in patients with dermatitis herpetiformis.\(^{125}\)

Adult patients can develop complications such as refractory coeliac disease, ulcerative jejunoileitis, and enteropathy-associated T-cell lymphoma through a progressive accumulation in the intestinal epithelium of aberrant (CD3ε+, CD103+, CD8-, CD4-, T-cell-antigen receptor αβ-) and clonal (restricted rearrangements of T-cell-antigen receptor γ chain) intraepithelial lymphocytes,\(^{126}\) abnormally expanded by interleukin 15.\(^{127,128}\) These diseases are a continuum of each other, in which phenotypic disturbances of intraepithelial lymphocytes and chromosomal rearrangements\(^{127,128}\) cause the self-perpetuating, gluten-independent tissue damage of refractory coeliac disease and the subsequent uncontrolled expansion of a neoplastic T-cell clone of enteropathy-associated T-cell lymphoma.\(^{129}\)

Refractory disease is defined by the absence of histological, and thus clinical, response to a gluten-free diet. Refractoriness is very often only apparent and mostly attributable to, dietary non-compliance or unintentional gluten intake. Other reasons for apparent refractoriness include misinterpretation of the original biopsy, slow histological recovery after diet, and misdiagnosis with other causes of villi atrophy (panel 3). Among them, autoimmune enteropathy may be easily differentiated by the presence of anti-enterocyte autoantibodies.\(^{130}\) Refractory coeliac disease has no relation to the persistence, after villi regrowth, of diarrhoea, which could be caused by concomitant irritable bowel syndrome, pancreatic insufficiency, microscopic colitis, and lactose malabsorption.\(^{131}\) Refractory coeliac disease could affect about 5% of patients with the condition,\(^{132,133}\) although this figure, which is derived from tertiary referral centres, might not reflect true prevalence. There are two categories of true refractory disease—type 1 and type 2 (table 1).\(^{132,134}\)

Ulcerative jejunoileitis, which shares many immunopathological features with type 2 refractory coeliac disease,\(^{135}\) is characterised by multiple ulcerations that evolve in strictures of the intestinal wall. Colicky central abdominal pain, distension, low-grade fever, diarrhoea, and weight loss are the main clinical manifestations. The rate of death is very high—resulting from obstruction, bleeding, and perforation.

Enteropathy-associated T-cell lymphoma is mainly localised in the proximal small intestine, is more prevalent in men over 60 years, and patients have a very poor outcome with a 2-year survival rate of 15–20%.\(^{136}\) Gross examination of the bowel reveals multifocal ulcerating nodules that can be accompanied by strictures and perforation (see figure 5 for histological features). Clinicians should be alerted to this complication by unexplained weight loss, abdominal pain, diarrhoea, loss of albumin and blood, increased lactate dehydrogenase, fever, and night sweating.\(^{136}\) Clinical suspicion should lead to an extensive diagnostic work-up (table 2); \(^{18}\)F-FDG-PET and histological identification of lesions are regarded as the best options for diagnosis.

Refractory type 2 coeliac disease is resistant to available treatments, and although new drugs are being used, no randomised studies have been undertaken. These drugs include the antiCD52 antibody alemtuzumab,\(^{137}\) cladribine,\(^{138}\) and high-dose chemotherapy given before autologous haemopoietic stem-cell transplantation.\(^{139}\) The latter produced encouraging results in early-stage

Figure 5: Features of enteropathy-associated T-cell lymphoma

Medium-sized to large tumour cells with round or angulated vesicular nuclei, prominent nucleoli, and moderate to abundant, pale-staining cytoplasm. A heavy eosinophil infiltrate is evident between the tumour cells. Haematoxylin and eosin stain.

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small bowel enema</td>
<td>Only moderate accuracy</td>
</tr>
<tr>
<td>Abdominal computed tomography</td>
<td>No specific pattern identified</td>
</tr>
<tr>
<td>PEG-enhanced magnetic resonance</td>
<td>Accuracy not tested in complicated coeliac disease</td>
</tr>
<tr>
<td>(^18)F-FDG positron emission tomography</td>
<td>Only preliminary prospective data; active peristalsis and inflammation may affect specificity</td>
</tr>
<tr>
<td>Capsule endoscopy</td>
<td>Capsule retention in the event of strictures; unfeasibility for collecting biopsies</td>
</tr>
<tr>
<td>Double balloon enteroscopy</td>
<td>Only partial small bowel visualisation</td>
</tr>
<tr>
<td>Explosive laparotomy</td>
<td>Invasive</td>
</tr>
</tbody>
</table>

Table 2: Diagnostic options in enteropathy-type T-cell lymphoma

PEG=polyethylene glycol. FDG=fluoro-deoxy-glucose.
enteropathy-associated T-cell lymphoma but not in patients with advanced or relapsed disease. Furthermore, the efficacy of an anti-interleukin 15 monoclonal antibody aimed at reinducing the apoptotic machinery in aberrant intraepithelial lymphocytes is being investigated.

A third of patients with untreated coeliac disease have haematological features of splenic hypofunction, which can be accompanied by spleen atrophy and depletion of IgM memory-B cells that protect against encapsulated bacteria. Although splenic hypofunction or atrophy is associated with a poor prognosis, its clinical relevance in coeliac disease has been overlooked—it is associated with increased autoimmunity and pneumococcal septicaemia in adult patients. Thus, patients with blood-film features of splenic hypofunction—Howell Jolly bodies or red cells with membrane excavations—should receive pneumococcal-conjugate vaccine.

Future directions

Improved understanding of the molecular basis of coeliac disease has enabled researchers to suggest alternatives to a gluten-free diet. These novel treatments are aimed at blunting the immune stimulatory effects of gluten (figure 6). However, we emphasise that some of these drugs (tissue-transglutaminase-inhibitors and monoclonal antibodies) have a poor safety profile, and their hypothetical use could, thus, be reserved for complicated forms of the disease.

Alternative approaches to manage the condition aim to eliminate detrimental gluten peptides through genetic detoxification or enzyme modification. The development of grains that have low or no immunotoxicity can be achieved with transgenic technology that deletes or silences harmful gluten sequences or selectively breeding non-toxic wheat varieties. However, although the availability of non-toxic bread might resolve problems such as poor palatability and the high cost of gluten-free foods, patients' social problems would nonetheless remain.

Gluten can be detoxified within the intestine by oral administration of prolyl endopeptidases—enzymes that cleave the proline-rich and glutamine-rich immunostimulatory gluten peptides into small sequences with reduced toxic effects. In a pilot clinical study, patients with remitting coeliac disease were given a prolyl endopeptidase from *Flavobacterium meningosepticum* and challenged with oral gluten. The results were inconclusive: fat and xylose malabsorption, instead of

Table: Novel treatments for coeliac disease

<table>
<thead>
<tr>
<th>Target</th>
<th>Therapeutic agent</th>
<th>Mechanism of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gluten peptides</td>
<td>Prolyl endopeptidases (PEP)</td>
<td>Cleavage of proline-rich and glutamine-rich gliadin peptides in safer sequences</td>
</tr>
<tr>
<td>Zonulin</td>
<td>Zonulin receptor antagonist (AT-1001)</td>
<td>Prevention of epithelial translocation of gluten peptides into the lamina propria</td>
</tr>
<tr>
<td>Interleukin 15</td>
<td>Anti-interleukin 15 antibody (AMG714)</td>
<td>Reduced cytolytic activity of intraepithelial lymphocytes against epithelial cells with consequent decrease of enterocyte apoptosis</td>
</tr>
<tr>
<td>Tissue transglutaminase</td>
<td>Tissue transglutaminase inhibitors</td>
<td>Blockade of deamidation and subsequent immunological potentiation of gluten peptides</td>
</tr>
<tr>
<td>HLA-DQ2/8 molecules</td>
<td>DQ2/8Q8 inhibitors</td>
<td>Blockade of presentation of gluten peptides with consequent silencing of gluten-reactive T cells</td>
</tr>
<tr>
<td>Dendritic cells</td>
<td>Peptide vaccines</td>
<td>Manipulation of dendritic cells in order to make them a vehicle for peptide vaccines</td>
</tr>
<tr>
<td>Interferon γ T cells</td>
<td>Anti-interferon γ antibody (fontolizumab)</td>
<td>Down-regulation of the Th1-mediated inflammatory response</td>
</tr>
<tr>
<td>Type 1 regulatory T cells (Tr)</td>
<td>Anti CD3 antibody (vivilzumab), anti CD4 antibody (xM-Y412), anti CD25 antibody (dalizumab)</td>
<td>Silencing of gluten-reactive T cells</td>
</tr>
<tr>
<td>Adhesion molecules</td>
<td>Anti-integrin α, antibody (natalizumab), anti-integrin α/β, antibody (MLN-02), integrin α antagonist (T-0047)</td>
<td>Blocking the cognate interaction between integrin α/β, expressed on lymphocytes and MADCAM-1 expressed on mucosal endothelial cells may suppress the immune response to gliadin</td>
</tr>
</tbody>
</table>

Figure 6: Novel treatments for coeliac disease
histology, was used to measure the efficacy of the enzyme supplement, which did not resolve the malabsorption in about half of the patients. Additional management strategies could include the combination of two gastrically active enzymes (eg, a gluten-specific endopeptidase from barley and a prolyl endopeptidase from Sphingomonas capsulata) are effective in detoxifying immunogenic peptides both in vitro and in animals; \(^{11}\) the use of a proline-endopeptidase from Aspergillus niger, which accelerates gluten degradation in a dynamic system that mimics in-vivo digestion; \(^{12}\) or the pretreatment of flour with a Streptomyces moboraensis transglutaminase that stops the immunostimulatory effects of flour. \(^{13}\) These approaches are limited by the need for complete digestion of the toxic epitopes of gliadin, which has never been shown. These strategies should be investigated in large long-term clinical studies to assess safety and clinical effectiveness. The development of gluten-sensitive rhesus macaques could be a promising model of coeliac disease for testing these new treatments. \(^{14}\)

Conflicts of interest

We declare that we have no conflicts of interest.

Acknowledgments

We thank Giovanni Gasbarrini, Monty Losowsky, and Thomas MacDonald for inspiring our ongoing work on coeliac disease. We thank Vincenzo Villanacci for providing figure 5.

References

Hill ID. What are the sensitivity and specificity of serologic tests for celiac disease? *BMJ* 2003; 326: 864–70.

Hill ID. What are the sensitivity and specificity of serologic tests for celiac disease? *BMJ* 2003; 326: 864–70.

