ECMO

Extra Corporeal Membrane Oxygenation

ECMO

• 1972 - first reported clinical use.

• 1976 - survival reported at 15%.

Used when circulatory and respiratory support is needed.

Criteria:

- 1. Acute cardio/pulmonary disease must be reversible.
- 2. 80% predicted mortality with "conventional therapy".
- 3. Ability to achieve "normal" quality of life following ECMO.
- 4. No major co-existing deficits.

Contra-indications

- 1. < 35 weeks gestation.
- 2. < 2000 grams birth weight.
- 3. Intra-cranial haemorrhage.
- 4. Severe coagulopathy.
- 5. > 10 days IPPV.
- 6. Any or all of the above criteria.

ECMO

Who might need it, and why.

Neonates:

Respiratory distress syndrome Meconium aspiration Persistent foetal circulation Congenital diaphragmatic hernia Post cardiac surgery

ECMO

Who might need it, and why.

Infants, children, adults:

Adult respiratory distress syndrome Post cardiac surgery Cardiomyopathy Bridge to transplant?

Respiratory Distress Syndrome (also known as Hyaline Membrane Disease)

- Low or absent surfactant level
- → alveolar atelectisis
- → ↑ respiratory effort
- → ↑ atelectisis
- → pulmonary

hypertension → ↓ pulmonary perfusion → hypoxia & hypercapnia

 \rightarrow acidosis

Alveolar damage, ↑ pulmonary hypertension, right - left shunt, etc, etc...

Meconium Aspiration

- May occur *in utero* or at birth
- Varying degree of airway obstruction & irritation/inflammation
- Problems are either: emphysema
 atelectisis
- Airleak-pneumothorax is common
- Hypoxia/hypercarbia \rightarrow acidosis \rightarrow etc, etc.

Persistent Foetal Circulation

(also known as Persistent Pulmonary Hypertension of the Newborn - PPHN)

Normally at birth:

Pulmonary vascular tone decreases

Ductal tone increases \rightarrow closure

Pressure differential causes the PFO to close

In PFC this does not occur.

Persistent Foetal Circulation Causes of PFC: Foetal pulmonary arteriolar hypertrophy Insufficient reduction in pul. vasc. tone Vaso-spasm or vasoconstriction due to hypoxia / acidosis Polycythemia; hypoglycaemia; hypocalcaemia Inflammatory response (prostaglandin/leucotriene) Meconium aspiration, CDH

Congenital Diaphragmatic Hernia

 Lung hypoplasia → compromised pulmonary function
 → hypoxia/acidosis

Surgical/medical intervention

 → maximise function
 of both lungs

ECMO How to tell if you need it...

Ventilation Index (VI) = $\frac{RR \times PIP \times PaCO_2}{1000}$

In neonates In C.D.H. In children VI > 90 for 4 hours
VI > 70 for 4 hours
VI > 40 for 4 hours

ECMO How to tell if you need it...

Oxygenation Index (OI) = $\frac{MAP \times FiO_2}{PaO_2}$

In neonates In C.D.H. In children OI > 0.40 for 4 hours OI > 0.25 for 4 hours OI > 0.40 for 4 hours

Venous pressure monitoring line

ECMO Circuit for Minimax Oxygenator

Pumps

1. Occlusive roller pump

- positive displacement
- resistance independent
- not used at RCH for ECMO

Pumps

2. Constrained vortex pump

- Resistance dependent
- Centrifugally generated pressure differential

Used exclusively at RCH for ECMO & VAD

Constrained vortex pump

- Non occlusive
- Centrifugal motion
- Flow range

- Output is resistance dependent

 patient volume dependent
- Revolutions per minute
- Output may vary

Constrained vortex pump

• Negative venous pressure

relates to - atrial volume status

- cannula position
 - pump rpms
- "Ideal" value
- Never sample from neg. venous pressure line
- Zeroing neg. venous pressure line

Is too much ever enough ??? (.....ECMO flows)

Cardiopulmonary Bypass Flow Rates

150 ml/kg/min (patients < 10 kg;
 < 18 months)

• 2400 ml/m²/min (others)

 $m^2 = body surface area$

Ventilator settings should be minimised (0.21, 20/5, 10)

Clinical signs are all important !!!

Blood gases Sepsis Minimal sedation

Difference between VA & VV ECMO

ECMO Oxygenators

Avecor:

- 6 sizes
- spiral wound silicone
- "True" membrane

Medtronic:

- 2 sizes
- Polypropylene hollow fibres
- "Pseudo" membrane

Quadrox_D:

- 1 size
- Polymethylpentene hollow fibres
- "True" membrane

Avecor Oxygenator

Avecor Oxygenator

SCAN on ECMO

The Silicone Membrane

Gas phase Membrane Blood phase

Minimax/Maxima Oxygenator

The Hollow Fibre

Hollowfibre wall

Quadrox_D Hollow fibre Oxygenator

The QUADROXD Oxygenator with an innovative Diffusion Membrane - now available with BIOLINE Coating -

Leading-edge Efficiency

The $QUADROX_D$ oxygenator with its tight hollow-fibre membrane made of polymethylpentene and with all the outstanding handling characteristics and high performance of the QUADROX oxygenator.

Technical Data

Blood flow rate	0.5 - 7 l/min
Total priming volume	250 ml
Effective surface area gas exchange	1.8 m_
Material of oxygenation membrane	Polymethylpent ene
Effective surface area heat exchange	0.6 m_
Material of heat exchange capillary	Polyethylene

Comparative Data at 4 I/min blood flow

Transfer of oxygen	288 ml/min
Transfer of carbon dioxide (1:1)	207 ml/min
Performance factor heat exchanger (water flow 10 I/min)	0.83
Pressure drop blood side (37°C)	40 mmHg

The innovative diffusion membrane providing constant safety:

- •eliminating plasma leaks
- •preventing the crossing of micro bubbles

Gas Exchange

Oxygen exchange depends on:

Type of membrane & diffusion characteristics

Thickness of the blood pathway

Surface area of the membrane

FiO₂ in the gas phase

Rate of blood flow

& not fresh gas flow

Carbon Dioxide exchange depends on:

Difference in CO₂ conc. between blood & gas

Size of membrane

Fresh gas flow

Blood pathway thickness

Blood flow rate

Heat Exchangers

Avecor 0800, 1500 Inserted in the circuit separately.

Avecor 2500, 3500 Integral with the body of the oxygenator

Jostra Quadrox_D, Medtronic Minimax and Maxima Incorporated in the body of the oxygenator **Temperature Maintenance**

42° C maximum blood temp

Limitation of the ECMO heater: it doesn't cool.

What about the hyperthermic patient? Is the patient heating the water?

Direct: inserted into the carotid artery and jugular vein

Percutaneous: inserted into the femoral artery and vein

Bypass: inserted into the aorta and, vena cavae or RA

Gas Delivery

Sechrist Blender O₂ control CO₂ control

Pressure relief valve Gas filter

Circuit Set-up

Which oxygenator & circuit?

Patient weight, height, surface area Calculate flow rate Oxygenation, circuit tubing Pump head, desired cannulae

Priming

Assemble circuit CO₂ flush Apply vacuum Add crystalloid Clamp Debubble Wait

Add albumin Circulate Add blood

ECMO Cannulae

Aortic: wire wound almost to tip, single outlet hole

Venous: shorter wire wound section, multiple inlet holes

ECMO Transport

Appen

The reward at the end of the day. A happy healthy child.